
Multi-threaded Reachability

Debashis Sahoo
Stanford University

sahoo@stanford.edu

Jawahar Jain
Fujitsu Labs of America, Inc.

jawahar@fla.fujitsu.com

Subramanian K. Iyer
University of Texas at Austin

subbuk@cs.utexas.edu

David L. Dill
Stanford University

dill@cs.stanford.edu

E. Allen Emerson
University of Texas at Austin

emerson@cs.utexas.edu

ABSTRACT
Partitioned BDD-based algorithms have been proposed in
the literature to solve the memory explosion problem in
BDD-based verification. Such algorithms can be at times
ineffective as they suffer from the problem of scheduling the
relative order in which the partitions are processed. In this
paper we present a novel multi-threaded reachability algo-
rithm that avoids this scheduling problem while increasing
the latent parallelism in partitioned state space traversal.
We show that in most cases our method is significantly faster
than both the standard reachability algorithm as well as the
existing partitioned approaches. The gains are further mag-
nified when our threaded implementation is evaluated in the
context of a parallel framework.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Verification

General Terms
Algorithms, Measurement, Verification

Keywords
Reachability Analysis, Parallel, Multi-threaded

1. INTRODUCTION
Reachability analysis is typically done using Reduced Or-

dered Binary Decision Diagrams (OBDDs) [1, 3]. A more
compact representation of boolean functions, Partitioned-
OBDDs (POBDDs) [7] leads to further improvement in reach-
ability analysis [9]. However, in standard POBDD-based
reachability analysis, the complexity of BDD-based image
computation can vary significantly between different parti-
tions. Thus, the relative order in which the partitions are
analyzed plays a critical role in the overall performance.
Finding an optimal schedule appears to be a hard prob-
lem. Therefore, any heuristic to find a good schedule is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

likely to not perform well in all cases. In a few cases,
the approach can get stuck in some difficult partition and,
hence, many remaining states which otherwise could have
been easily computed are not reached at all. We present
a solution to this scheduling problem by developing a novel
multi-threaded reachability approach. In a multi-threaded
environment, using our techniques of Early Communication
and Partial Communication, state space traversal in some
partitions can continue even while remaining partitions are
proving to be difficult.

We show that our results are better in most cases than
OBDDs as well as POBDDs even when the method is run-
ning on a single processor. Using our approach, we can lo-
cate error states significantly faster than other BDD based
methods. We can also show that our results are much better
than the standard reachability algorithms in many passing
cases as well. Finally, we show that our method is more
robust than the standard sequential POBDD-based reacha-
bility algorithm as it is able to solve various easy reachability
instances which prove to be problematic for current POBDD
approaches.

Our approach also improves the parallelism achieved by a
naive parallelization of standard POBDD-based algorithm.
We estimate the time it takes when all the threads are run
in parallel in a multi-processor and shared-memory architec-
ture. Our results show that in a large number of cases we
get super linear improvements with respect to the number
of processors used, especially for checking failing invariants.

2. PRELIMINARIES
The set of reachable states is obtained by repeatedly per-

forming image computations until a fixed point is reached [3,
8]. This is termed as the Least Fixed Point computation.
Verification based on reachability can often be improved by
the use of POBDDs [6, 9, 11]. Essentially, the POBDD
based-reachability algorithm performs as many steps as pos-
sible of image computation within each partition i in a step
of least fixed point within the partition. When no more im-
ages can be thus computed, it synchronizes between parti-
tions by considering the transitions that originate in parti-
tion i and lead out from there. The term Communication
refers to these cross-partition image computations that are
followed by transferring the computed BDDs to other parti-
tions. Notice that the POBDD-based reachability algorithm
performs a BFS which is local to individual partitions, and
then synchronizes to add states that result from transitions
crossing over from one partition to another. We may charac-
terize this as a region-based BFS, where individual regions

of the state space, i.e, the partitions, are traversed indepen-
dently in a breadth first manner. We term the computation
within individual partitions as a local Least Fixed Point com-
putation or a local LFP computation in short.

Related Work
Several methods have been proposed to do parallel veri-
fication. Stern and Dill [13] parallelize an explicit model
checker. In [14], parallelized BDDs are used for reachability
analysis. Verification using parallel reachability analysis has
been studied in [4, 5, 16]. A scalable parallel reachability
analysis is presented in [5]. They perform distributed reach-
ability using the classical BFS traversal of the state space
in a parallel environment, using distributed memory. A dif-
ferent disjunctive partitioning approach based on iterative
squaring is explored in [2]. Thread-based approach has been
applied to Constraint-Based Verification in [10].

The focus of this paper is not on designing a good par-
allel reachability algorithm for a distributed computational
framework. Rather we assume a shared memory model, and
the algorithm uses the fast communication between threads,
to improve the parallelism. Therefore, we do not compare
our method with other parallel reachability algorithms that
are designed to run in a distributed framework.

3. IMPROVING PARALLELISM IN MULTI-
THREADED REACHABILITY

The POBDD-based algorithm given in [9] is naturally par-
allelizable. The local LFP computation of each partition
combined with their Communication can be processed in
parallel. We have to wait for all the partitions to finish
their local LFP computation and the Communication to be-
gin transferring the communicated states to the appropriate
partition. However, empirically we find that this simple par-
allelization of the algorithm in [9] doesn’t have much paral-
lelism. This may be due to following reasons
High variation of BDD computations
The performance of the image computations inside each par-
tition depend on the BDD variable order. We call a parti-
tion an easy partition if the BDDs inside the partition are
compact and a hard partition otherwise. For a majority of
circuits, the complexity of the BDD computations can have
significant variations between different partitions. In such
cases, all easy partitions wait for the hard partitions to fin-
ish their image computation, which reduces the parallelism
significantly.
Depth of the local LFP computation:
Another reason for the reduced parallelism may be due to
the fact that the depth of the local LFP computation can
vary a lot between partitions. In this case the partition with
smaller depth finish faster whereas the partitions with larger
depth take longer time. This results in many idle threads
which reduces the parallelism.

In practice we find that a large number of partitions wait
for a few hard partitions. To address this issue we give
following heuristics to improve the parallelism.

Early Communication: Communicate states to other par-
tition after the least fixed point.

Partial Communication: Initiate a partial communica-
tion in an idle thread.

3.1 Early Communication
After a partition finish its local LFP computation, we al-

low the partition to immediately communicate its states to

the other partitions. Each partition accepts this commu-
nicated states asynchronously during their local LFP com-
putation. This would enable the easy partitions to make
progress with their subsequent local LFP computation with-
out waiting for the hard partitions to finish. Therefore, the
early communication from easy partitions to other easy par-
titions enables all such partitions to reach a fixed point. This
is very difficult to achieve in sequential partitioned reachabil-
ity analysis because such scheduling information is difficult
to obtain.

If new states are communicated during early communica-
tion, then we restart the current image computation after
adding these states. Such augmentation can make a harder
image computation significantly easier in some cases. This
may be due to the reason that some of the communicated
states correspond to what were hard states to compute in
the receiving partition using the local LFP.

3.2 Partial Communication
Even after applying the above technique, we found that

many partitions are still waiting for other partitions to com-
municate some states, so that they can continue their local
LFP computation. This case arises when all the easy par-
tition finish their local LFP and need communication from
a hard partition to make further progress. To improve par-
allelism, we initiate a Communication in an idle thread us-
ing a small subset of the state space of the hard partition.
The Communication introduces new states in the easy parti-
tions. This enables easy partitions to make progress further
with their collective least fixed point from the communicated
states. Intuitively this tries to accelerate the activity among
easy partitions. We use a small subset of state space instead
of the full state space of the hard partition in order to reduce
the computational effort in Communication. This heuristic
tries to keep all the threads busy there by improving the
parallelism. Further, this heuristic can increase the number
of early communication instances. Thus, the combined ef-
fect of the partial communication and early communication
improves the parallelism significantly.

Parallel-Reachability(n, TR, InitStates) {
Create n partitions for InitStates

Run in parallel for each partition i{
After every microsteps runs

ImproveParallelism(i) {
Get all the communicated states
Calculate LeastFixedPoint(Rch) in partition i

Compute cross-over states from i to all parts
}

} until (No new state is found in any partition);
}
ImproveParallelism(n: Partition Number) {

check and add all the communicated states
if new states are added

restart current image computation
request a waiting partition to initiate

partial communication procedure
}

Figure 1: Parallel Reachability Algorithm

3.3 Multi-threaded Reachability Algorithm
We present our complete parallel POBDD-based reacha-

bility algorithm as shown in Figure 1 using the techniques
discussed in last section.

We run the local LFP computation combined with the
Communication in parallel. All computation inside a parti-
tion is managed by a dedicated thread. Each thread polls

for the communicated states from the other threads. Af-
ter every micro-step of the image computation, each thread
calls a function ImproveParallelism that implements two
heuristics for improving parallelism. The first heuristic is
to do early communication. As a part of the first heuristic,
the function checks whether other threads have communi-
cated some states to the current thread. If it finds any
threads, then it transfer all the communicated states from
those threads to the current thread. This simple check and
update subroutine performed by each thread implements the
early communication heuristic. The second heuristic is to
do partial communication. As a part of this heuristic, every
active thread checks for an idle thread. If an idle thread is
found, then it gives a small subset of the state space from the
current partition to the idle thread. The idle thread start
a Communication from this subset of states to the partition
associated with the idle thread.

3.4 Termination Condition
In our multi-threaded approach, each thread manages a

partition. The threads goes back to idle state if no new
states are communicated to the partition associated with
that thread. The thread manager asserts a global termina-
tion flag if all the threads are idle.

4. EXPERIMENTAL RESULTS
Our implementation of the POBDD-data structure and al-

gorithms uses VIS-2.0 package. We modified the CUDD [12]
package to support multi-threading. Our experiments were
run using default cluster size of 5000, lazy sift reordering,
MLP image method on a Linux box with 2.20 GHz Intel
XEON CPU and 2 GB RAM. We report results only on
VIS [15] and industrial circuits. In keeping with the typical
timeout limits set in our in-house verification tools, we set a
timeout of 5000 seconds on all circuits. For sake of brevity,
we present our results only on those circuits where VIS re-
quires more than 100 seconds. Results are omitted for the
circuits where all the methods timeout.

4.1 Overview of Table
We compare the total time taken by the following ap-

proaches: the standard approach of VIS, the simple parti-
tioning approach and our multi-threading of POBDD-based
reachability algorithm. We compare the naive multi-threading
with the successive introduction of the two heuristics for
communication – early communication and partial commu-
nication. The columns in the table are arranged in the same
order. The first column is the circuit name, followed by
vis, sequential POBDDs, naive parallelization, the multi-
threaded approach with just early communication and fi-
nally both techniques. The final column has two parts –
seq and est par, which report, respectively, the total work
time for the method under a sequential implementation and
the estimated runtime for a parallel shared memory archi-
tecture. Note that the seq time is only the work time (total
CPU time), whereas the estimated parallel time also takes
into account the idle processor time in an actual parallel
implementation. The details of the processor utilization are
presented in Section 6.3 using Gantt charts.

In the case of multi-threading, the interleaving of threads
is handled by the operating system, and accordingly, there
may be a system dependent variation in runtime of the pro-
gram. In most cases the variation in runtime is quite small.
However, for a small number of cases we do observe signif-
icant runtime variations. Therefore, the development of a

our multi-threaded approaches
early comm +

seq early partial comm
ckts vis pobdd naive comm seq est par

(a) Industrial Circuits using 16 threads
c1 371 T/O T/O 1888 88 14
c2 3346 1728 1738 1417 284 26
c3 2540 T/O T/O T/O 1260 93
c4 2236 T/O T/O T/O 1955 142

(b) Failing VIS benchmark Circuits using 16 threads
b12abs2 111 4169 873 311 4333 318

ball7 2076 T/O T/O T/O 768 88
blkjack3 T/O 4715 2521 2675 T/O∗ 3316

palu 273 1098 169 157 44 7
vsa16a6 3897 T/O T/O 31 41 10
vsa16a7 4212 608 685 31 16 9
vsa16a8 3907 T/O T/O 31 38 10

vsaR T/O 75 413 809 866 58

(c) Passing VIS benchmark Circuits using 16 threads
FIFOs 2259 T/O T/O T/O T/O T/O

s1269b-1 3635 471 1255 216 184 20
s1269b-5 2287 471 1362 128 133 12
sp prod 891 143 233 45 144 42

(d) Simple Industrial Circuits using 4 threads
d1 6.3 T/O T/O T/O 8.3 6.6
d2 9.7 T/O T/O T/O 6.3 5.8
d3 14.7 T/O T/O T/O 14 9.6
d4 10.6 T/O T/O T/O 6.4 5.8
d5 11.5 13.1 9.3 9.8 14.6 8.1

(T/O = Timeout of 5000 sec)
(∗ = Finishes in 5590 seconds)

Table 1: Time (in sec) for Invariant Checking on
VIS benchmarks and a few Industrial Circuits

deterministic algorithm is kept as a future work. We report
the results in the table by running all the circuits in a single
batch.

4.2 Efficiency Issues
In the above tables, for almost all entries, the resulting

multi-threaded run times (even while using a single CPU)
become much faster than standard OBDDs as well. They
are also clearly superior to classical Partitioned-reachability.
Our proposed multi-threaded approach is also usually supe-
rior to the lesser sophisticated multi-threading techniques. If
we consider the results in context of a 16-way shared memory
architecture, then in an overwhelming majority of difficult
cases they offered a super-linear improvement, i.e., greater
than 16X, as compared to OBDD based reachability.
Scheduling is a Problem Even on Easy Functions
(Table 1(d)) : Consider results of some properties from
an industrial design whose OBDDs are fairly small. It is
known that creating a large number of partitions on an easy
function (BDD) leads to a large amount of overhead [7].
This makes partitioning based verification artificially harder.
Thus for properly evaluating the impact of scheduling we
make fewer partitions; we choose to make 4 partitions in-
stead of 16. Note that even for such simple cases classi-

cal sequential POBDD-based analysis can get trapped in
an inefficient schedule. Note, even for an easy function, in
POBDD-based reachability a partition can have its local
fix-point at a depth larger than the actual fix-point of the
function. Good schedule should avoid exploring such par-
titions early. Due to early communication and round-robin
nature of our approach, we avoid unnecessarily deep image
calculations in these functions.

4.3 Improving Parallelism
Consider the reachability analysis of s1269b from the VIS

Verilog benchmark suite. As shown in Table 1(c), we per-
form reachability analysis using 16 partitions, each of which
runs in a separate thread.

 0
s

 T
ot

al
 w

or
k

=
 1

25
5s

 0
s

T
ot

al
 w

or
k

=
 2

16
s

 0
s

 T
ot

al
 w

or
k

=
 1

84
s

(a) (b) (c)

Figure 2: Multi-threaded Reachability with succes-
sive addition of each heuristics

Figure 2 shows the Gantt charts of three multi-threaded
reachability analysis on s1269b circuit. We use the three
charts to show the effect of the two heuristics added suc-
cessively to the reachability algorithm. Figure 2(a) shows
Gantt chart of the naive multi-threaded reachability. Fig-
ure 2(b) shows the Gantt chart of reachability analysis when
early communication is allowed. Figure 2(b) shows the Gantt
chart of reachability analysis when both early communica-
tion and partial communication are allowed. Each partition
is represented by a vertical broken line. The filled segment
represents the work time for the partition to perform a com-
putation. At the end of each such stage, a small cross in-
dicates the communication of states to other partitions. A
break in the line indicates that the corresponding thread is
idle. In a multi-processor environment, this corresponds to
the idling of the processor. However, in a multi-threaded en-
vironment, the processor can immediately schedule another
thread for execution. The total time is the work time for
executing all threads on a single processor. As we can see
from the figure, more gaps are being filled with the addi-
tion of each heuristic. This shows a clear trend of improved
parallelism in each case.

However, in a very deep circuits where there is not much
parallelism, our heuristics make unnecessary attempts to im-
prove parallelism, therefore the reachability analysis gets
worse as compared to the standard VIS or the standard
POBDD-based reachability analysis. A fix of the above
limitation is to dynamically recognize deep reachability in-
stances and suitably change the communication strategy in
such cases.

5. CONCLUSION
In this paper we show that by avoiding inefficiencies due

to the scheduling bottleneck, the use of multi-threading pro-
vides significant gains over both POBDD as well as OBDD

approaches. Our heuristics is also able to improve the par-
allelism over a naive multi-threaded approach because it
avoids unnecessary waiting for the communication of states.
It also uses the communicated states in the active local LFP
computation. This enables all the easy partitions to reach a
collective local least fixed point among themselves. There-
for, if an error is present in this fixed point, then the al-
gorithm detects it very fast. Further, if the error state is
present in a hard partition, then it may detect it fast us-
ing the early communication. The greedy nature of multi-
threaded reachability allows it to find easy to reach paths
to the error states. The above arguments indicate that er-
ror detection may happen dramatically faster in such an
approach.

For some functions, POBDDs can often be much smaller
than OBDDs. Hence, if the instability of scheduling can be
ameliorated by a multi-threaded approach, then even though
the threaded approach will have an overhead, it may com-
plete the full state space traversal faster than other BDD-
based methods for passing cases also. Thus, in most cases
(passing or failing) we are significantly faster than both the
standard reachability algorithm as well as the partitioned
approaches. The gains are dramatically magnified when
evaluated in context of a shared-memory parallel architec-
ture.

6. REFERENCES
[1] R. Bryant. Graph-based Algorithms for Boolean Function

Manipulation. IEEE Trans. Comput., C-35:677–691, 1986.
[2] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer. Disjunctive

partitioning and partial iterative squaring: An effective
approach for symbolic traversal of large circuits. In DAC, pages
728–733, 1997.

[3] O. Coudert, C. Berthet, and J. C. Madre. Verification of
sequential machines based on symbolic execution. In Proc. of
the Workshop on Automatic Verification Methods for Finite
State Systems, 1989.

[4] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state
space construction for model-checking. In SPIN workshop on
Model checking of software, pages 217–234. Springer-Verlag
New York, Inc., 2001.

[5] T. Heyman, D. Geist, O. Grumberg, and A. Schuster.
Achieving scalability in parallel reachability analysis of very
large circuits. In CAV, 2000.

[6] S. Iyer, D. Sahoo, C. Stangier, A. Narayan, and J. Jain.
Improved symbolic Verification Using Partitioning Techniques.
In Proc. of CHARME 2003, volume 2860 of Lecture Notes in
Computer Science, 2003.

[7] J. Jain. et. al., Functional Partitioning for Verification and
Related Problems. Brown/MIT VLSI Conference, 1992.

[8] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[9] A. Narayan. et. al., Reachability Analysis Using
Partitioned-ROBDDs. In ICCAD, pages 388–393, 1997.

[10] C. Pixley and J. Havlicek. A verification synergy:
Constraint-based verification. In Electronic Design Processes,
2003.

[11] D. Sahoo and S. Iyer. et. al., A Partitioning Methodology for
BDD-based Verification. In FMCAD, 2004.

[12] F. Somenzi. CUDD: CU Decision Diagram Package
ftp://vlsi.colorado.edu/pub, 2001.

[13] U. Stern and D. L. Dill. Parallelizing the murphy verifier. In
CAV, 1997.

[14] T. Stornetta and F. Brewer. Implementation of an efficient
parallel BDD package. In DAC, pages 641–644, 1996.

[15] VIS. Verilog Benchmarks http://vlsi.colorado.edu/˜ vis/.
[16] B. Yang and D. R. O’Hallaron. Parallel breadth-first bdd

construction. In symposium on Principles and practice of
parallel programming, pages 145–156. ACM Press, 1997.

