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Implication Networks from Large Gene Expression Datasets

Abstract

We present a new type of gene expression network, based on Boolean implications between genes, which scales to very large amounts of gene expression data. The resulting networks identify not only symmetric relationships between genes, such as co-expression, but also previously unexplored asymmetric relations that represent if-then rules.  The algorithm was applied to publicly available data from thousands of microarrays for humans, mice, and fruit flies (for a total of 365 million Affymetrix probeset expression levels). The resulting network consists of hundreds of millions of relationships between genes, and identifies biologically meaningful information about gender differences, tissue differences, development, differentiation and co-expression. We also identify new relationships that are conserved between humans, mice, and fruit flies.  The full Boolean relationships are publicly available on an Internet server.
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Introduction

A large and exponentially growing volume of gene expression data from microarrays is now available publicly. Since the quantity of data from around the world dwarfs the output of any individual laboratory, there are opportunities for data mining that can yield insights that would not be apparent from smaller, less diverse data sets. Consequently, there have been many efforts to extract large networks of relationships from large amounts of gene expression data. Almost all of this work constructs networks of pairwise relationships between genes, indicating that the genes are co-expressed (Allocco et al. 2004; Arkin and Ross 1995; Jordan et al. 2004; Lee et al. 2004; Tavazoie et al. 1999).  Co-expression is a symmetric relationship (if A is related to B, then B is related to A), such as correlation.

This paper introduces the use of Boolean implication networks for mining of large quantities of biological data. It is shown how to construct the networks, networks are constructed from massive amounts of publicly available gene-expression microarray datasets, and relationships are identified that capture important biological phenomena that would be overlooked in other types of networks.

The algorithm classifies the expression level of each gene on each array as “low” or “high” relative to a threshold, and finds all Boolean relationships between pairs of genes, including not only symmetric relationships capturing co-expression, but also “if-then” relationships (called “implications”) which are asymmetric. For example, a relationship could say “if gene A’s expression level is high, then gene B’s expression level is almost always low (more concisely, “A high implies B low” or “A high(B low”). It is important to understand that an implication does not necessarily imply causality. Instead, it is an empirically observed invariant on the expression levels of two genes.  A network of implications is a directed graph, which connects nodes with arrows, instead of the more common undirected graphs used for many biological networks. 
Symmetric relationships are implications in both directions.  Genes A and B are strongly correlated, in general, when A high(B high and A low(B low.   In this case, A and B are said to be equivalent.  A second kind of symmetric relation occurs when A high(B low and A low(B high.  In this case, the expression levels of A and B are usually strongly negatively correlated, and A and B are said to be opposite. Implications capture many more significant relations between pairs of genes than correlation. In other words, there may be a highly significant Boolean implication between genes whose expression is weakly correlated. There are six possible Boolean relationships: two symmetric (equivalent and opposite) and four asymmetric (low ( low, low ( high, high ( low, high ( high).
The Boolean implication networks described here are more comprehensive than previous networks constructed from microarray data.  No previous network has identified implication relations between genes (as opposed to equivalences), and there are almost 100 times
 as many implication relations as equivalences in the implication network. The relationships in the resulting network are often biologically meaningful. Differences associated with gender and tissue-type are readily apparent. Relationships between genes that are active only during specific developmental or differentiation stages are also evident. Highly conserved symmetric relationships are enriched with the cell cycle and central nervous system specific genes. Many highly conserved asymmetric relationships are also observed between cell cycle and the central nervous system specific genes. The Boolean implication network could conceivably offer a new discovery platform, providing new biological hypotheses to be explored further in the wet lab. The Boolean relationships are available for exploration at http://gourd.stanford.edu/BooleanNet
.

Generating the Boolean implication network is conceptually a simple process. The relationships are immediately evident upon inspection of a scatter plot of the data points of expression levels for the two related genes, and are thus completely transparent and intuitive to biologists, unlike some approaches which find complex relationships that can be more difficult for users to interpret. 

Results and Discussion

Boolean implication relationships in gene expression microarray data.

The networks are constructed by finding Boolean implications between probesets in hundreds to thousands of microarrays belonging the same platform.  The logarithm (base 2) of each expression level is used.  To define a Boolean relationship between genes, each probeset is assigned a threshold t. Expression levels above t ( 0.5 are classified as “high,” expression levels below t ( 0.5 are classified as “low,” and values between t ( 0.5 and t + 0.5 are classified as “intermediate.”  Given two probesets, a 2D scatter plot of the pair of values from each array can be drawn as in figure 1.  An implication exists when there are enough high and low values for each gene and when one or more quadrants is sparsely populated with points (details appear in Methods, below).

There are four possible asymmetric Boolean relationships, one of which holds when a particular quadrant is sparse. In Figure 1(a), the quadrant for gene PTPRC low and gene CD19 high is sparse, so PTPRC low(CD19 low.  In Figure 1(b), XIST high (RPS4Y1 low (this relationship was recently identified in study of the CELSIUS microarray database (Day et al. 2007), which annotated microarrays by gender). Figure 1(d) shows FAM60A low(NUAK1 high. In this case, when FAM60A expression level is low, NUAK1 expression level is high, but when FAM60A expression level is high, NUAK1 expression level is evenly distributed between high and low. Finally, Figure 1(e) shows that COL3A1 high(SPARC high. This particular relationship is complex, since it can be viewed as a combination of multiple kinds of relationships including linear and constant. However, Boolean analysis discovers the simple logical implication: COL3A1 high(SPARC high. 

For each of the above Boolean relationships there is always a contrapositive Boolean relationship that holds. For example, PTPRC low(CD19 low so CD19 high( PTPRC high. Similarly, XIST high(RPS4Y1 low, so RPS4Y1 high(XIST low, FAM60A low(NUAK1 high so NUAK1 low(FAM60A high and COL3A1 high( SPARC high so SPARC low ( COL3A1 low.

The two possible symmetric Boolean relationships correspond to two sparse quadrants in a scatter plot. First, the low-high and high-low quadrant can be sparse as shown in Figure 1(c), which shows that CCNB2 and BUB1B are equivalent in the human network. Highly positively correlated genes are almost always equivalent. Alternatively, the low-low and high-high quadrants can be sparse, as shown in Figure 1(f), which shows that EED and XTP7 are opposite. Negatively correlated genes are often opposite. Notice that it is not possible to have both the low-low and high-low quadrants be sparse because that would require the second gene to be always low; similarly, it is not possible for the low-high and low-low quadrants both to be sparse.

We constructed implication networks for human, mouse, and fruitfly from publicly available microarray data. A very large number of Boolean relationships were found in for individual species. Approximately 3 billion probeset pairs are checked for possible Boolean implications in the human dataset. There are 208 million implications in the human dataset, even with a stringent requirement for significance (a permutation test yields a false discovery rate (FDR) of 10-4). Similarly, 2 billion and 196 million probeset pairs are checked for possible Boolean implications in mouse and fruit fly datasets, respectively. The mouse dataset has 336 million implications (FDR = 6x10-5), and the fruit fly dataset has 17 million implications (FDR = 6x10-6). Of the 208 million implications in the human dataset, 128 million are high(low, 38 million are low(low, 38 million are high(high, 2 million are low(high, 1.6 million relations are equivalences and 0.4 million are opposite. 

Table 1 summarizes the number of Boolean relationships found in each dataset. In all cases, the most common relationships are the high(low type, and the opposite relations are rare. As can be seen from Table 1, in the human dataset 1% of the total Boolean relationships are symmetric, while the remaining 99% are asymmetric. Similarly, in the mouse dataset 1.4% of the total Boolean relationships are symmetric, and 98.6% are asymmetric. However, in the fruit fly dataset. 12% of the Boolean relationships are symmetric. The number of low(low relationships is the same as the number of high(high relationships because of contrapositives.   One reason for the large number of high(low relationships is that there are many genes that are specific to particular cell and tissue types, and n mutually exclusively expressed genes give rise to n*(n-1) high(low relationships. 

An interesting fact about the array technology is that alternative probesets for the same gene are not always equivalent in the network; instead, there is often a low(low relationship between them.  This is consistent with previous findings of low average correlation among them (Liao and Zhang 2006). Boolean analysis might be helpful in pointing out important differences among different probesets for the same gene, although we have not explored this issue.

Boolean relationships identify known biological properties and can be used to infer new biological properties.

Boolean relationships represent a wide variety of currently known biological phenomena. The generated networks contain relationships that show gender differences, development, differentiation, tissue difference and co-expression, suggesting that the Boolean implication network can potentially be used as a discovery tool to synthesize new biological hypotheses. The scatter plot between XIST and RPS4Y1 in Figure 2(a) is an example of an asymmetric Boolean relationship that shows gender difference. RPS4Y1 is expressed only in certain male tissues because it is present solely on the Y chromosome (Weller et al. 1995) and XIST is normally expressed only in female tissues (Brockdorff et al. 1991; Brown et al. 1991), so RPS4Y1 and XIST are rarely expressed together on the same array.  Hence, the relationships RPS4Y1 high ( XIST low and XIST high ( RPS4Y1 low hold.  Moreover, in the network, RPS4Y1 is equivalent to four other genes, all of which are Y-linked: RPS4Y1 low( ACPP low (Figure 2(b)), KLK2 low, and KLK3 (PSA) low, all of which are prostate-specific (Sharief et al.1994).

Some of the relationships capture the hierarchy of tissue types.  For example, GABRB1 is specific to the central nervous system (Roth et al. 2006), and ACPP high ( GABRB1 low (Figure 2(c)), because the prostate is distinct from the CNS.  On the other hand, GABRA6 is primarily expressed in the cerebellum, and we see that GABRB1 low ( GABRA6 low, because the cerebellum is part of the CNS (more literally, if a tissue sample is not part of the CNS, it is also not part of the cerebellum). 

To show an example of a Boolean relationship between two developmentally regulated genes, we identify HOXD3 and HOXA13 as shown in Figure 2(d). HOXD3 and HOXA13 have their evolutionary origin from fruit fly antennapedia (Antp) and ultrabithorax (UBX) respectively (Carroll 1995). It was recently discovered that HOXD3 and HOXA13 are expressed in human proximal and distal sites respectively (Rinn et al. 2007), a pattern of expression that is evolutionarily conserved from fruit flies. The human Boolean network indeed shows that high expression of HOXD3 and HOXA13 are mutually exclusive (HOXD3 high ( HOXA13 low), which is consistent with the above paper. (Unlike the findings of that paper, this relationship is not highly conserved in our analysis because orthologous the mouse and fruit fly probesets for the desired genes did not have a good dynamic range in the dataset.) 

Relationships between genes expressed during differentiation of specific tissue types also appear in the network. For example, a Boolean relationship between two key marker genes from B cell differentiation, KIT and CD19 is shown in Figure 2(e). KIT is a hematopoietic stem cell marker (Ikuta et al. 1991) and CD19 is a well-known B cell differentiation marker (Stamenkovic and Seed 1988).  KIT and CD19 are rarely expressed together, in the form of the the Boolean relationships  CD19 high ( KIT low and KIT high ( CD19 low.

From inspecting the human network, it is clear that hundreds of genes are co-expressed that are related to the cell cycle. Two such genes, CDC2 and CCNB2, are shown in Figure 2(f).

Many Boolean relationships are highly conserved across species.

We constructed a network consisting of the relations that hold between orthologous genes in multiple species. The network of relationships that are conserved in humans and mice network has a total of 3.2 million Boolean relationships consisting of 8,000 low(high, 2 million high(low, 0.5 million low(low, 0.5 million high(high, 10,814 equivalent and 94 opposite implications. Applying the same analysis to randomized human and mouse datasets yielded no conserved Boolean relationships, for an estimated false discovery rate of less than 3.1x10-7. An analogous network of implications conserved across human, mouse and fruit fly has 41,260 Boolean relationships: 24,544 high(low, 8,060 low(low, 8,060 high(high and 596 equivalent and 0 opposite
. The false discovery rate for the conserved human, mouse and fruit fly Boolean network is less than 2.4x10-5. Figure 4 shows three examples of Boolean relationships that are conserved in human, mouse and fruit fly. The first row in Figure 4 is an example of equivalent relationships that are conserved in all three species. The middle and bottom rows show highly conserved high(low and high(high relationships. 

Figure 3 shows three examples of conserved relationships. The top row in Figure 4 shows that CCNB2 (CycB in fruitfly) and BUB1B are equivalent in all three species. (In this case, a network of correlated genes would also be able to find these conserved relationships because they are very well correlated in each species.). It is well known that both CCNB2 and BUB1B are related to the cell cycle (Bolognese et al. 1999; Davenport et al. 1999).  In order to study the equivalent genes, the connected components of the network of equivalent relationships that were conserved in human, mouse, and fruit fly were examined (a connected component of an undirected graph is a set of genes where there is a path between every pair of genes). The algorithm found 13 different connected components. However, there are two distinct large components. The largest component has 178 genes including BUB1B, EZH2, CCNA2, CCNB2 and FEN1. The genes belong to this component were analyzed using DAVID functional annotation tools (Dennis et al. 2003; Hosack et al. 2003). The functional annotation analysis indicates DNA replication (2.03x10-14, 19 genes) and cell cycle process (1.06e-13, 30 genes) as significant gene ontology annotations for the largest component. The functional annotation analysis also discovers proteasome and cell cycle as significant KEGG pathways for the largest component. The second component has 32 genes with transport (2.55x10-8, 16 genes) and synaptic transmission (1.04x10-8, 8 genes) as significant gene ontology annotations. Further, this component is enriched for calcium signaling pathway in KEGG database. The list of genes for the components and the DAVID functional annotation results are included in the supplementary information.

The connected components described above have biologically relevant relationships. CCNB2 and BUB1B play roles in mitosis (Nurse P 1990; Davenport et al. 1999), EZH2 is a histone methyltransferase (Cao et al. 2002), CCNA2 is required for G1/S transition  (Pagano et al. 1992) and FEN1 has endonuclease activity during DNA repair (Hiroka et al. 1995). Surprisingly, all these genes are highly correlated in all three species. Further, it is worthwhile to note that of the two human homologs of Drosophila polycomb-group gene Enhancer-of-zeste (E(z)), EZH1 and EZH2, only EZH2 maintains the functional associations with other cell cycle genes. EZH1 might have evolved to acquire a different function than EZH2 in mammals. In addition, there are highly conserved equivalent genes that are part of same protein complexes such as CDC2-CCNB2, EED-EZH2, RELB-NFKB2, RFC1-RFC2-RFC4, and MSH2-MSH6. Moreover, a conserved cluster of four genes: NDUFV1, IDH3B, CYC1 and UQCRC1 are all related to generation of energy through oxidative phosphorylation and electron transport chain.

The bottom row in Figure 3 shows an asymmetric relationship between two well known cell cycle regulators, E2F2 and PCNA (Ivey-Hoyle et al. 1993; Mathews et al. 1984; Miyachi et al. 1978). The middle row in Figure 3 shows an asymmetric relationship that is conserved in all three species. GABRB1 is a receptor to an inhibitory neurotransmitter in vertebrate brain (Kirkness et al. 1991). It is surprising to see that the relationship between GABRB1 and BUB1B is conserved in vertebrates and arthropods (fruit fly). This relationship suggests that cells expressing this particular neurotransmitter are less likely to be proliferating.
Comparison to correlation networks

To compare the properties of Boolean implication networks to correlation-based networks, both types of networks were constructed based on human CD antigen genes. This set of genes were chosen because it is a relatively small and coherent subset of biologically interesting genes, and a correlation network can be constructed much more rapidly than if all the probesets on the arrays were used.  The correlation-based network on human CD genes was computed as described in  the Methods section. 

Figure 4(a-g) shows histograms of the various kinds of Boolean relationships with respect to the Pearson’s correlation coefficients. Figure 4(a) shows the number of equivalences from the Boolean network for different ranges of correlation coefficients. The numbers of gene pairs that have no Boolean relationships are shown in Figure 4(d). 

As expected, asymmetric Boolean relationships usually display poor correlation. 98.8% of the asymmetric Boolean relationships on the human CD genes have correlation coefficients ranging from –0.65 to 0.65. Further, most of the low(high and high(low relationships have negative correlation coefficients. The low(high relationships have correlation coefficients from –0.55 to 0 and the high(low relationships have correlation coefficients from –0.65 to 0.25 as shown in Figure 4(f) and Figure 4(c) respectively. Low(low and high(high have mostly positive correlation coefficients, from –0.15 to 0.95, as shown in Figure 4(b) and Figure 4(g). (They have exactly same distribution of correlation coefficients because of contrapositives.) A few of these relationships have very high correlation coefficients; for example, relationships with correlation coefficients 0.933 and 0.7963 are shown in Figure 4(h) and Figure 4(i), respectively and the relationships are expected to be equivalent. Instead, the Boolean relationship is COL3A1 low ( COL1A1 low due the presence of microarrays where the expression levels for COL3A1 is high and COL1A1 is low. Figure 4(i) shows an example of VPREB1 high ( IGLL1 high relationship that is expected to be equivalent according to correlation network.

Although highly correlated genes generally correspond to symmetric Boolean relationships, 20% of the symmetric Boolean relationships have correlation coefficients less than 0.65. Figure 4(a) shows that the number of Boolean relationships increases linearly with the correlation coefficient suggesting that most of the Boolean equivalence have good correlation coefficient. Also, 99.9% of the gene pairs with no Boolean relationships have correlation coefficient from –0.65 to 0.65 as shown in Figure 4(d). Most methods to compute correlation-based networks use a threshold of 0.7 or greater for the correlation coefficient (Jordan et al. 2004; Lee et al. 2004; Tsaparas et al. 2006). Therefore, gene pairs with high correlation coefficients are almost always discovered in the Boolean analysis. In Figure 4(j), TLR2 and ITGAM have a correlation coefficient of 0.7 and are considered equivalent. However, correlation-based networks will miss some of the symmetric Boolean relationships and most of the asymmetric Boolean relationships, which might be biologically relevant. Figure 4(k) shows an example scatter plot between IDH3B and SUCLG1 with correlation coefficient 0.4916 that our approach identifies as equivalent.  There is evidence that IDH3B and SUCLG1 are biologically related, since that relationship is conserved between human and mouse and both are important enzymes of the TCA cycle.

Boolean implication networks are not scale free.

It has often been observed that other biological networks are scale-free (Barabasi and Albert 1999; Barabasi and Oltvai 2004; Bhan et al. 2002; Featherstone and Broadie 2002; Jeong et al. 2000; Jeong et al. 2001).  To study the global properties of Boolean implication networks, we plotted the frequency of the probesets against their degree (number of Boolean relationships) as shown in Figure 5. Each log-log plot shows on the horizontal axis the degree, while the vertical axis shows the number of probesets that have the number of relationships to other probesets. The top row in Figure 5 corresponds to the human Boolean network. From left to right are shown the total Boolean relationships, only symmetric Boolean relationships, and only asymmetric Boolean relationships. These plots are comparable to the Boolean networks for mouse and fruit fly (as shown in Supplementary Figure 1). The middle row in Figure 5 corresponds to the conserved Boolean network between human and mouse, constructed of relationships that are present in both human and mouse. Finally, the bottom row in Figure 5 shows the conserved Boolean network between human, mouse and fruit fly. As can be seen from the figures, the plots for symmetric Boolean relationships (2nd and 3rd columns in Figure 5
) are close to linear. However, the plots for total Boolean relationships (1st column in Figure 5) are non-linear. Therefore, the overall Boolean network is not scale free
.

Computing the Boolean network is fast.

The total computation time to construct the network of implications for the human dataset was 2.5 hours on a 2.4Ghz computer with 8GB of memory. The human dataset consisted of a total of 54,677 distinct probesets from 4,787 microarrays. The computation time for the mouse dataset was 1.6 hours. This data set has 45,101 probesets and 2,154 microarrays. Finally, the computation time for fruit fly dataset, consisting of 14,010 probesets and 450 microarrays, was 2 minutes. 

Comparison with other approaches for building gene networks

There is no comparable work that discovers asymmetric implications on large-scale gene expression,  A method for discovering Boolean implication networks somewhat similar to ours was described for probabilistic reasoning (Liu and Desmarais 1997), but it seems that the idea has not previously been applied to microarray data – or indeed, to any aspect of biology.

The subset of relationships that are symmetric form a network that can be compared with the many similar networks that have been constructed by others representing co-expression, based on correlation or measures of mutual information (Allocco et al. 2004; Arkin and Ross 1995; Jordan et al. 2004; Lee et al. 2004; Tavazoie et al. 1999, Basso et al. 2005; Butte and Kohane 2000; Margolin et al. 2006; Wang et al. 2005, Day et al. 2007).  The symmetric subset of our network is one of the largest co-expression networks built to date.

There are also algorithms for constructing networks that represent relations among more than two genes.  These representations include Bayesian networks (Friedman et al. 2000; Friedman 2004; Lee et al. 2006; Li and Chan 2004; Pe'er et al. 2001; Segal et al. 2004; Segal et al. 2005; Segal et al. 2001) , Graphical Gaussian Models (Kishino and Waddell 2000; Schafer and Strimmer 2005) and Boolean networks  (Gupta et al. 2007; Ideker et al. 2000; Pal et al. 2005; Shmulevich and Zhang 2002; Shmulevich and Kauffman 2004).   These networks capture more information about the data, but at great cost, because the number of possible relationships grows exponentially with the number of genes involved in each relationship, so they can only be applied to relatively small sets of genes.

There have been other efforts to collect and mine large microarray datasets (Day et al. 2007; Rhodes et al. 2007; Hibbs et al. 2007) and applied to the study of human cancer (Hanauer et al. 2007).  Constructing an implication network is an alternative tool for extracting knowledge from these datasets.

Conservation across multiple species has been used to infer likely regulatory relationships (Chalmel et al. 2007; Sinha et al. 2004; Strand et al. 2007; Stuart et al. 2003; Tamada et al. 2005; Tirosh et al. 2006; Tsaparas et al. 2006; van Noort et al. 2003). This work does not find conserved asymmetric relationships, in general. It is easy to perform conservation analysis on Boolean network, which involves checking if the orthologous gene pairs have the same Boolean relationships, while other approaches require non-trivial probabilistic measures of  conservation. Numerous studies use co-expression, while building conserved gene-interaction networks. An early study of this type (van Noort et al. 2003) improved the accuracy of predicting functional gene interactions by using conserved co-expression between Saccharomyces cerevisiae and Caenorhabditis elegans. They used a correlation coefficient threshold of 0.6. Subsequently, another study (Stuart et al. 2003) identified 22,163 gene pairs from 3,182 DNA microarrays from humans, flies, worms and yeast. This study used a rank order statistic to compute a probabilistic measure of the conserved coexpression in multiple species. Further, Bayesian analysis was combined with conservation to build gene networks for yeast and human using cell cycle data (Tamada et al. 2005). Later studies focus on human and mouse to discover conserved gene expression in brain (Strand et al. 2007) and gametogenesis (Chalmel et al. 2007). 

Materials and methods

Data collection and preprocessing

CEL files for 4,787 Affymetrix U133Plus 2.0 human microarrays, 2,154 Affymetrix 430 2.0 mouse arrays, and 450 Affymetrix Genome 1.0 Drosophila were downloaded from NCBI’s Gene Expression Omnibus (Edgar et al. 2002).  These array types were chosen because they are widely used, and because results from different arrays can be compared more easily than results from two-channel arrays.  The datasets were normalized using the standard RMA algorithm (Irizarry et al. 2003); however, the available version of RMA uses excessive amounts of primary memory when normalizing thousands of arrays, so the program was re-written to increase memory efficiency. Boolean expression levels were assigned for each gene in each array, using the log (base 2) of the expression values (Figure 6 illustrates this process). First, a threshold was assigned to each gene using the StepMiner algorithm (Sahoo et al. 2007), which was originally designed to fit step functions to time-course data.  For this application, the expression values for each gene were ordered from low-to-high, and StepMiner was used to fit a rising step function to the data that minimizes the differences between the fitted and measured values.  This approach places the step at the largest jump from low values to high values (but only if there are sufficiently many expression values on each side of the jump to provide evidence that the jump is not due to noise), and sets the threshold at the point where the step crosses that original data (as shown in Figure 6).  In the case where the gene expression levels are evenly distributed from low to high, the threshold tends to be near the mean expression level. If the assigned threshold for a gene is t, expression levels above t ( 0.5 are classified as “high,” expression levels below t ( 0.5 are classified as “low,” and values between t ( 0.5 and t + 0.5 are classified as “intermediate.”  Whenever more than 2/3 of the expression values of a gene were at an intermediate level of expression, the gene was excluded from further analysis, due to insufficient dynamic range in the expression values.

Discovery of Boolean relationships

All pairs of features with sufficient dynamic range were analyzed to discover potential Boolean relationships. There are six possible Boolean relationships between genes A and B that are constructed from four possible Boolean implications: A low ( B low, A low ( B high, A high ( B low, and A high ( B high. Each of the above implications is detected by checking whether one of the four quadrants in the scatter plot of Figure 6 is significantly sparsely populated with points compared with the other quadrants (intermediate values for A and B are ignored in this analysis). There are at most two possible sparse quadrants because the thresholds always separate a reasonable number of low and high expression levels for each gene. Each sparse quadrant corresponds to an implication. If A high ( B high and A low ( B low, A and B are considered to have equivalent levels of Boolean expression.  When A high ( B low and A low ( B high, A and B are considered to have an opposite Boolean relationship. In both of these cases, two diagonally opposite quadrants are significantly sparse. In other cases, where there is only one sparse quadrant, the Boolean relationships between A and B have the same name as Boolean implications: A low ( B low, A low ( B high, A high ( B low, and A high ( B high. There are two tests that must succeed for the relationship between A and B to be considered an implication.  For concreteness, let us consider whether the low-low quadrant is sparse, yielding an implication A low ( B high. First, the number of expression values in the sparse quadrant must be significantly less than the number that would be expected under an independence model, given the relative distribution of low and high values for A and B.  Specifically, if a00, a01, a10, a11 are the number of expression values where A and B are low and low, low and high, high and low, and high and high, respectively, a threshold on the following statistic is performed to test whether the low-low quadrant is sparse.


total = a00+ a01+ a10+ a11


number of A low expression values = nAlow = (a00+ a01)


number of B low expression values = nBlow = (a00+ a10)

expected = (nAlow/ total * nBlow/ total) * total =  (a00+ a01) * (a00+ a10)/ total


observed = a00

Second, the observed values in the sparse quadrant are considered erroneous points and a sparse quadrant must have a small number of erroneous points. A maximum likelihood estimate of the error rate is computed as follows. 


A second threshold on this error rate is performed to ensure that the quadrant is really sparse. If the above tests succeed, the low-low quadrant is considered sparse and therefore, A low ( B high is inferred. A threshold of 3 for the first statistic and a threshold of 0.1 for the error rate are used here to discover the Boolean relationships. A Boolean network (directed graph) is built from the Boolean relationships, where each probeset A has two nodes,  representing its low and high values. and edges are Boolean implications. For example, there is a directed edge from A low to B high if there is a Boolean implication A low ( B high. 

Computation of False Discovery Rate

To compute the false discovery rate (Storey and Tibshirani 2003), we permute randomly the expression values for each gene independently. Then, build a complete Boolean network as above. This analysis is repeated twenty times to compute the average number of Boolean relationships in the randomized data. The ratio of the average number of Boolean relationships in the randomized data to the original data is considered the false discovery rate of the Boolean analysis.

Correlation network for human CD genes

Human CD (cluster of differentiation) genes were selected for comparison against a correlation-based network. The set of genes includes 966 Affymetrix U133 Plus 2.0 human probesets. Pearson’s correlation coefficients for all 466,095 pairs of genes were computed. Boolean analysis is also performed on this data to compare Boolean network with the correlation-based network.

Discovery of conserved Boolean relationships

Mouse and fruit fly orthologs for human genes were selected from the EUGene database (Gilbert 2002). For each Boolean relationship in the human dataset, a conserved relationship is detected if any of the mouse orthologs of the first human gene has a significant Boolean relationship with another mouse ortholog of the second human gene. To find conserved Boolean relationships in all three species, we check if any of the fruit fly orthologs of the first mouse gene has a significant Boolean relationship with another fruit fly orthologs of the second mouse gene for each conserved relationships in human and mouse.

Connected component analysis

Human genes for the highly conserved relationships in all three species were selected for the connected component analysis. An undirected graph was built with the gene names as nodes and the edges are from Boolean equivalent relationships. Connected component analysis was performed using a standard union-find algorithm (Galler and Fisher 1964) on the undirected graph to find clusters of genes that are connected together.
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Figure legends

Figure 1. Boolean relationships: Six different types of Boolean relationships between pairs of genes taken from the Affymetrix U133 Plus 2.0 human dataset. Each point in the scatter plot corresponds to a microarray experiment, where the value for the x-axis is gene expression for the x-axis gene and the value for the y-axis is gene expression for the y-axis gene. There are 4,787 points in each scatter plot. (a) PTPRC low ( CD19 low. (b) XIST high ( RPS4Y1 low. (c) Equivalent relationship between CCNB2 and BUB1B. (d) FAM60A low ( NUAK1 high. (e) COL3A1 high ( SPARC high. (f) Opposite relationship between EED and XTP7.

Figure 2. Boolean relationships follow known biology: (a) Gender difference, XIST high ( RPS4Y1 low, male is different from female. (b) Gender tissue specific, RPS4Y1 low ( ACPP low, only males have prostates. (c) Tissue difference, ACPP high ( GABRB1 low, prostate is different from brain. (d) Development, HOXD3 high ( HOXA13 low, anterior is different from posterior. (e) Differentiation, KIT high ( CD19 low, Differentiated B Cell is different from HSC. (f) Co-expression, CDC2 vs CCNB2.  
Figure 3. Highly conserved Boolean relationships: Orthologous CCNB2 and BUB1B equivalent relationships: (a) Bub1 vs CycB in fruit fly, (b) Bub1b vs Ccnb2 in mouse, (c) BUB1B vs CCNB2 in human. Orthologus BUB1B high ( GABRB1 low: (d) Bub1 vs Lcch3 in fruit fly, (e) Bub1b vs Gabrb1 in mouse, (f) BUB1B vs GABRB1 in human. Orthologous E2F2 ( PCNA high: (g) E2f vs mus209 in fruit fly, (h) E2f1 vs Pcna in mouse, (i) E2F2 vs PCNA in human.

Figure 4. Comparison of Boolean network with correlation-based network: On human CD (clusters of differentiation) genes: this plot shows the histogram of different types of Boolean relationships. (a) Equivalent. (e) Opposite. (b) Low ( Low. (c) High ( Low. (f) Low ( High. (g) High ( High. (d) No relationships. Example scatter plots of gene pairs with their correlation coefficient. (h) COL3A1 low ( COL1A1 low, correlation coefficient = 0.933. This is an example of a clear asymmetric relationship with very high correlation coefficient. (i) VPREB1 high ( IGLL1 high, correlation coefficient = 0.7963. This is an example of a clear asymmetric relationship with moderate correlation coefficient. (j) TLR2 and ITGAM are equivalent, correlation coefficient = 0.7. This is an example of equivalent relationship with low correlation coefficient. (k) IDH3B and SUCLG1 are equivalent, correlation coefficient = 0.4916, is an example of equivalent relationship with very low correlation coefficient. 

Figure 5. Properties of Boolean network: Log-log plot of the histogram of the probesets with respect to their number of Boolean relationships. Human Boolean network: (a) total, (b) symmetric, and (c) asymmetric Boolean relationships. Conserved human and mouse Boolean network: (d) total, (e) symmetric, (f) asymmetric Boolean relationships. Conserved human, mouse and fruit fly Boolean network: (g) total, (h) symmetric, (i) asymmetric Boolean relationships.

Figure 6. Boolean analysis: The expression levels of each probeset are sorted and a step function is fitted (using StepMiner) to the sorted expression level w minimizes the square error between the original and the fitted values. A threshold t is chosen, where the step crosses the original data. The region between t-0.5 and t+0.5 is classified as “intermediate”, the region below t-0.5 is classified as “low” and the region above t+0.5 is classified as “high”. The examples show probesets for two genes CDH1 and CDC2. As can be seen, CDH1 has a sharp rise between 6 and 9 and the StepMiner algorithm was able to assign a threshold in this region. CDC2, however, is very linear, and the StepMiner algorithm assigns the threshold approximately in the middle of the line. A scatter plot is shown to illustrate the analysis. Each point in the scatter plot corresponds to a microarray experiment, where the value for the x-axis is CDC2 expression and the value for the y-axis is CDH1 expression. Boolean analysis is performed on a pair of probesets, which ignores all the points that lie in the intermediate region and analyzes the four quadrants of the scatter plot. Four asymmetric relationships (low ( low, low ( high, high ( low, high ( high) are discovered, each corresponds to exactly one sparse quadrant in the scatter plot and two symmetric relationships (equivalent and opposite) are discovered each corresponds to two diagonally opposite sparse quadrants.

Table legends

Table 1: Number (in millions) of Boolean relationships in human, mouse and fruit fly datasets. The human dataset has 1% symmetric (equivalence + opposite) and 99% asymmetric (low ( low + low ( high + high ( low + high ( high) relationships of the total Boolean relationships. The mouse dataset has 1.4% symmetric (equivalence + opposite) and 98.6% asymmetric (low ( low + low ( high + high ( low + high ( high) relationships of the total Boolean relationships. The fruit fly dataset has 12% symmetric (equivalence + opposite) and 88% asymmetric (low ( low + low ( high + high ( low + high ( high) relationships of the total Boolean relationships.

Figures

Figure 1. Boolean relationships
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Figure 2. Boolean relationships follow known biology
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Figure 3. Highly conserved Boolean relationships
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Figure 4. Comparison of Boolean network with correlation-based network
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Figure 5. Properties of Boolean network
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Figure 6. Boolean analysis
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Tables

Table 1: Number (in millions) of Boolean relationships in human, mouse and fruit fly datasets.

	Dataset
	Total
	Low implies High
	High implies Low
	Low implies Low
	High implies High
	Equivalent
	Opposite

	Human

Mouse

Fruit Fly
	208

336

17
	2

8

0.3
	128

208

7.3
	38

57.6

3.7
	38

57.6

3.7
	1.6

4.1

1.9
	0.4

0.7

0.1


Supplementary information

Figure 1. Properties of human mouse and fruit fly Boolean networks: log-log plot of the histogram of the probesets with respect to their number of Boolean relationships. Human Boolean network: (a) Total, (b) symmetric, (c) asymmetric Boolean relationships. Mouse Boolean network: (d) Total, (e) symmetric, (f) asymmetric Boolean relationships. Fruit fly Boolean network: (g) Total, (h) symmetric, (i) asymmetric Boolean relationships.
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Following files can be accessed at http://gourd.stanford.edu/BooleanNet. 

File 1. Connected component analysis: The cluster of genes can be found in each line as tab separated HUGO gene symbol name.

File 2. DAVID functional annotation (GO Analysis) on the largest cluster
File 3. DAVID functional annotation (GO Analysis) on the second largest cluster
File 4. DAVID functional annotation (KEGG) on the largest cluster
File 5. DAVID functional annotation (KEGG) on the second largest cluster
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�Is this number correct?


�Add some kind of accession datesince the content is likely to change over time.  Also, why BoolNet (sounds like BullNet)…maybe better to say BooleanNet?


�Interesting to state that there were no opposite conserved?


�Why not use notation like Figure 3(a), 3(b), etc.


�Why not make the comment that the asymmetric relationships are not scale free (they dominant th e total). 





