A New Reachability Algorithm for Symmetric
Multi-processor Architecture

Debashis Sahoo!, Jawahar Jain®, Subramanian Iyer?, and David Dill!

! Stanford University, Stanford CA 94305, USA
2 University of Texas at Austin, Austin, TX 78712, USA
3 Fujitsu Labs of America

Abstract. Partitioned BDD-based algorithms have been proposed in
the literature to solve the memory explosion problem in BDD-based ver-
ification. A naive parallelization of such algorithms is often ineffective
as they have less parallelism. In this paper we present a novel parallel
reachability approach that lead to a significantly faster verification on
a Symmetric Multi-Processing architecture over the existing one-thread,
one-CPU approaches. We identify the issues and bottlenecks in paral-
lelizing BDD-based reachability algorithm. We show that in most cases
our algorithm achieves good speedup compared to the existing sequential
approaches.

1 Introduction

A common approach to formal verification of hardware is checking invariant
properties of the design. Unbounded model checking [Tl 2] of invariants is usu-
ally performed by doing a reachability analysis. This approach finds all the states
reachable from the initial states and checks if the invariant is satisfied in these
reachable states. However, exhausting the state space using the reachability ap-
proach is an intractable problem. Not surprisingly, such approaches suffer from
the so-called state explosion problem for representing large state sets.

In practice, reachability analysis is typically done using Reduced Ordered
Binary Decision Diagrams (OBDDs) [3, 4]. A more compact representation of
boolean functions, Partitioned-OBDDs (POBDDs) [5] leads to further improve-
ment in reachability analysis [6]. Various improvements to BDD data structures,
variable ordering schemes, as well as the reachability algorithm itself have also
been suggested to improve capturing the total reachable state space using reach-
ability based verification. However, in practice the verification problem typically
consumes far more resources than are typically available for even small sized
problems of 100 state variables, and the gap between requirement and perfor-
mance is continually growing.

The growing prevalence of, increasingly powerful, clustered high performance
SMP (Symmetric Multi-Processing) machines appears to be an inevitable trend.
However, it is not straightforward to devise a reachability algorithm to mean-
ingfully use a very large number of processors.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 26-38] 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Reachability Algorithm for Symmetric Multi-processor Architecture 27

Given the above two trends, it is important to develop efficient parallel verifi-
cation algorithms that can appropriately exploit the SMP architecture. Though
the intractability of the problem will remain, the verification time can get re-
duced by a significant factor.

In this paper, we show that the naive parallelization of the POBDD-based
reachability analysis doesn’t have good parallelism. We present a novel parallel
reachability approach that improves the parallelism. Our algorithm also im-
proves the performance of sequential POBDD based approaches drastically in
some cases. This is because, in sequential POBDD-based algorithms, the rela-
tive order in which the partitions are analyzed plays a critical role in the overall
performance. Finding an optimal schedule is a very hard problem. Therefore,
any heuristic to find a good schedule is likely to not perform well in all cases. In
a few cases, the approach can get stuck in some difficult partition and, hence,
many remaining states which otherwise could have been easily computed are not
reached at all. Our algorithm clearly obviates this scheduling problem since it
runs all partitions in parallel. Also, in a parallel shared-memory environment,
using our techniques of Farly Communication and Partial Communication, state
space traversal in some partitions can continue even while remaining partitions
are proving to be difficult.

We show that in most cases our algorithm performs much better than the
corresponding sequential run using 8 processors. Using our approach, we can lo-
cate error states significantly faster than other BDD based methods. We can also
show that our results are much better than the standard reachability algorithms
in many passing cases as well. Finally, we show that our method is more robust
than the standard sequential POBDD-based reachability algorithm as it is able
to solve various easy reachability instances which prove to be problematic for
current POBDD approaches.

2 Preliminaries

Reachability analysis is usually based on a breadth-first traversal of finite-state
machines [4] [2]. The algorithm takes as inputs the set of initial states and a
transition relation (TR) that relates the next states a system can reach from
each current state. The set of reachable states is obtained by repeatedly per-
forming image computations until a fixed point is reached [4 [2]. This is termed
as the Least Fired Point computation. Verification based on reachability can
often be improved by the use of POBDDs [7 [6], [8]. Essentially, the POBDD
based-reachability algorithm performs as many steps as possible of image com-
putation within each partition ¢ in a step of least fized point within the partition.
When no more images can be thus computed, it synchronizes between partitions
by considering the transitions that originate in partition ¢ and lead out from
there. The term Communication refers to these cross-partition image computa-
tions that are followed by transferring the computed BDDs to other partitions.
Notice that the POBDD-based reachability algorithm performs a BFS which is
local to individual partitions, and then synchronizes to add states that result
from transitions crossing over from one partition to another. We may charac-

28 D. Sahoo et al.

terize this as a region-based BFS, where individual regions of the state space,
i.e, the partitions, are traversed independently in a breadth first manner. We
term the computation within individual partitions as a local Least Fized Point
computation or a local LFP computation in short.

Related Work

Several methods have been proposed to do parallel verification. Stern and Dill [9]
parallelize an explicit model checker. In [I0], parallelized BDDs are used for
reachability analysis. Verification using parallel reachability analysis has been
studied in [I1 12| T3]. A scalable parallel reachability analysis is presented in
[12]. They perform distributed reachability using the classical BFS traversal of
the state space in a parallel environment, using distributed memory. A differ-
ent disjunctive partitioning approach based on iterative squaring is explored in
[14]. A thread-based approach has been applied to Constraint-Based Verification
in [I5].

We implemented our algorithm as a multi-threaded program. We would like
to compare our algorithm with other distributed approaches. However, at the
time of submission of this paper, we didn’t have an implementation of other
distributed algorithms to compare with our approach. Therefore, we keep this
as a future work.

3 Improving Parallelism in the Reachability Analysis

The reachability analysis involves construction of a TR and the actual reacha-
bility steps using the TR. We use the standard sequential approach of building
the transition relation. We keep the parallelization of the construction of the
transition relation as a future work. In this paper we parallelize the reachability
algorithm using various heuristic improvement.

The POBDD-based algorithm given in [6] is naturally parallelizable. The lo-
cal LFP computation of each partition combined with their communication can
be processed in parallel. We have to wait for all the partitions to finish their
local LFP computation and the communication to begin transferring the com-
municated states to the appropriate partition. However, empirically we find that
this simple parallelization of the algorithm in [6] doesn’t have much parallelism.
This may be due to following reasons

High Variation of BDD Computations

The performance of the image computations inside each partition depend on the
BDD variable order. We call a partition an easy partition if the BDDs inside the
partition are compact and a hard partition otherwise. For a majority of circuits,
the complexity of the BDD computations can have significant variations between
different partitions. In such cases, all easy partitions wait for the hard partitions
to finish their image computation, which reduces the parallelism significantly.

Depth of the local LFP computation
Another reason for the reduced parallelism may be because the depth of the lo-
cal LFP computation can vary a lot between partitions. In this case the partition

A New Reachability Algorithm for Symmetric Multi-processor Architecture 29

with smaller depth finish faster whereas the partitions with larger depth take
longer time. This results in many idle processors which reduces the parallelism.

In practice we find that a large number of partitions wait for a few hard
partitions. To address this issue we use following heuristics[16] to improve the
parallelism.

Early Communication: Communicate states to other partition after the least
fixed point.

Partial Communication: Initiate a partial communication in an idle proces-
SOT.

3.1 Early Communication

After a partition finishes its local LFP computation, we allow the partition to im-
mediately communicate its states to the other partitions. Each partition accepts
this communicated states asynchronously during their local LFP computation.
This would enable the easy partitions to make progress with their subsequent lo-
cal LFP computation without waiting for the hard partitions to finish. Therefore,
the early communication from easy partitions to other easy partitions enables
all such partitions to reach a fixed point. This is very difficult to achieve in se-
quential partitioned reachability analysis because such scheduling information is
difficult to obtain.

If new states are communicated during early communication, then we restart
the current image computation after adding these states. Such augmentation can
make a harder image computation significantly easier in some cases. This may
be because the states that would have been hard to compute in one partition
can be more easily computed in another partition and then communicated to
the first partition.

3.2 Partial Communication

Even after applying the above technique, we found that some partition that
have completed the local LFP on their current states were waiting for other
partitions to communicate some states, so that they can continue their local
LFP computation. This case arises when all the easy partition finish their local
LFP and need communication from a hard partition to make further progress.
To improve parallelism, the active partition initiates a communication in an idle
processor using a small subset of the state space of the hard partition. The
communication introduces new states in the easy partitions. This enables easy
partitions to make progress further with their collective least fixed point from the
communicated states. Intuitively this tries to accelerate the activity among easy
partitions. We found that communicating the full BDD to a different partition is
very hard. Therefore, we find a small subset of state space that can be expressed
with a compact BDD (High Density BDD[17]). This heuristic tries to keep all the
processors busy there by improving the parallelism. Further, this heuristic can
increase the number of early communication instances. Thus, the combined effect
of the partial communication and early communication improves the parallelism
significantly.

30 D. Sahoo et al.

Parallel-Reachability(n, TR, InitStates) {
Create n partitions for InitStates
Run in parallel for each partition i{
After every microsteps runs
ImproveParallelism(z) {
Get all the communicated states
Calculate LeastFixedPoint(Rch) in partition 4
Compute cross-over states from i to all parts

}

} until (No new state is found in any partition);

ImproveParallelism(n: Partition Number) {
check and add all the communicated states
if new states are added
restart current image computation
request a waiting partition to initiate
partial communication procedure

Fig. 1. Parallel Reachability Algorithm

3.3 Parallel Reachability Algorithm

We present our complete parallel POBDD-based reachability algorithm as shown
in Figure [[using the techniques discussed in last section.

We run the local LFP computation combined with the Communication in
parallel. All computation inside a partition is managed by a dedicated proces-
sor. Each processor polls for the communicated states from the other processor.
After every micro-step of the image computation, each processor calls a function
ImproveParallelism that implements two heuristics for improving parallelism.
The first heuristic is to do early communication. As a part of the first heuristic,
the function checks whether other processors have communicated some states
to the current partition. If it finds any processors, then it transfer all the com-
municated states from their corresponding partitions to the current partition.
This simple check and update subroutine performed by each processor imple-
ments the early communication heuristic. The second heuristic is to do partial
communication. As a part of this heuristic, every active processor checks for an
idle thread. If an idle processor is found, then it gives a small subset of the state
space from the current partition to the idle processor. The idle processor start
a Communication from this subset of states to the partition associated with the
idle processor.

3.4 Termination Condition

In our approach, each processor manages a partition. The processor goes back
to idle state if no new states are communicated to the partition associated with
that processor. One of the processor manages the global termination conditions.
The processor asserts a global termination flag if all the processors are idle.

A New Reachability Algorithm for Symmetric Multi-processor Architecture 31

4 Engineering Issues

Our implementation of the POBDD-data structure and algorithms uses VIS-
2.0 package. The VIS-2.0 package uses CUDD [I8] for the BDD operations.
We implemented our parallel reachability algorithm as a multi-threaded pro-
gram in a symmetric multi-processing (SMP) architecture. SMP systems can
be programmed using several different methods. In a multi-threaded approach,
the program divides the work across the processors by spawning multiple light-
weight threads, each executing on a different processor and performing part of
the calculation. Since all threads share the same program space, there is no need
for any explicit communication calls. However, designing a multi-threaded FV
approach using BDDs poses significant challenges.

BDD Issues in Multi-threaded Reachability: The CUDD BDD package
is designed for use in a non-thread based environment. Further, there are var-
ious optimization features in CUDD, that prevent it to function correctly in a
multi-threaded environment. It uses many global variables, which needs to be
synchronized in a multi-threaded environment. Nevertheless, fixing this problem
enables the program to behave correctly provided each thread work on their
respective BDD-managers. However, this leads to a non-deterministic behavior
in the BDD-computation.

The CUDD package uses various memory based optimization to boost its per-
formance. However, such optimizations behave non-deterministically in a multi-
threaded environment. Therefore, the produced computation trace is often non-
reproducible and the program becomes very difficult to debug. It also results in
many orders of magnitude difference in run times. Thus, the program behavior
is not predictable. However, deterministic behavior of the program is very im-
portant for the evaluation of its performance. We re-engineered all the relevant
features in the CUDD package that leads to a non-deterministic behavior. This
enables the BDD-package to be safe to run in a multi-threaded environment and
makes the program more conveniently analyzable. However, this was surprisingly
painful to implement.

In addition to the above, each thread needs to synchronize based on a de-
terministic measure before communicating to another thread. Otherwise, the
program would behave non-deterministically because of the non-determinism in
the thread scheduling. We synchronize the threads using a fixed count based on
the number of BDD conjunction operations and the number of sift operations
during variable reordering. Further, we find that the deterministic version of
the program performs as good as the non-deterministic program as described in
Section

Performance Issues on SMP Machine: Further, the scheduling of the
threads in an SMP machine, although improved significantly over the years,
might not be optimal for our application. Each thread, in our case use sepa-
rate BDD managers for carrying out various BDD operations. Therefore, if the
system thread scheduler assigns the thread to a different processor, then the
thread would loose all its cached data and the new processor would re-fetch all

32 D. Sahoo et al.

the necessary data to carry out the BDD operations. Thus, assigning a thread
to a new processor would incur unnecessary large overhead. However, a very
simple scheduling strategy of assigning each thread to an exclusive processor
would reduce the overhead generated by the heavy cache misses significantly.
On the other hand, it is quite difficult to quantify the performance penalty due
the non-optimality of scheduling threads.

Performance Issues on Uniprocessor Machine: Furthermore, the simulated
parallel execution of the multi-threaded algorithm in a uniprocessor machine may
perform better than other sequential algorithm because of the scheduling flexi-
bility. However, the program may have large overhead due to the cache misses
because of the frequent switching of threads in one processor. We find that
reducing the frequency of switching of threads in a uniprocessor machine sig-
nificantly improve the results. Moreover, a simulated sequential approach in an
8-CPU machine, where each thread can potentially use different processor cache
improves the results further. We use explicit locks to run one thread at a time
in the 8-CPU machine. We find that the performance in this simulated case is
2-6 times faster than the corresponding uniprocessor run. Thus, the uniproces-
sor performance is significantly penalized by the cache overhead. Therefore, we
provide results from this simulated sequential approach in the 8-CPU machine
in our final table to give a good overview of the parallelism achieved. However,
the performance in any uniprocessor machine is much worse than the simulated
sequential case in an 8-CPU machine.

5 Experimental Results

We run our experiments using default cluster size of 5000, lazy sift reorder-
ing, MLP image method on a 8-way SMP Linux machine based on Intel(R)
Xeon(TM) MP CPU 2.20GHz and 8GB RAM. We run all the sequential algo-
rithms on a Linux box with Intel(R) XEON(TM) CPU 2.20GHz and 2GB RAM.
We report results only on a few VIS-verilog [19] and industrial circuits because
of limited time. In keeping with the typical timeout limits set in our in-house
verification tools, we set a timeout of 5000 seconds on all circuits. For sake of
brevity, we present our results only on those circuits where VIS requires more
than 100 seconds. Results are omitted for the circuits where all the methods
timeout. We use 8 different partitions for all POBDD-based approaches. We se-
lect the partitioning variable using the method in [6]. We use same partitioning
strategy for all partitioned approaches in order to perform a fair comparison.

5.1 Overview of Table

Table [1l shows our invariant check results on various public and industrial cir-
cuits. In Table Il we separate the total reachability time into the transition
relation construction time and the actual reachability time. We compare the ac-
tual reachability time taken by the following approaches: the standard approach
of VIS, the simple partitioning approach and our parallel POBDD-based reach-
ability algorithms. We compare the naive parallel approach with the successive

A New Reachability Algorithm for Symmetric Multi-processor Architecture 33

Table 1. Time (in sec) for Invariant Checking on a few VIS-verilog and Industrial
Circuits using 8 CPUs

Parallel (early comm +
Parallel | |8 CPUs partial comm)
TR seq |8 CPUs|| (early ||Parallel [Simulated

ckts|time| vis |pobdd| (naive) || comm) ||8 CPUs Seq

(a) Industrial Circuits

ci] 36 [371| T/O | T/O |[T/O 227 286
c2| 12 [3346| 1789 | 1564 93 917 917
c3| 17 |2540| T/O | T/O T/O 62 228
c4| 11 (2236| 2084 | 1174 161 161 509
(b) Few VIS-benchmark Circuits
spprod| 5 [891 | 61 53 93 440 510
am2910| 9 |T/O| 281 122 204 356 386
palu| 3 |273 4 9 8 9 9
s1269b-1| 2 (3635 T/O | T/O 59 60 72
s1269b-5| 2 |2287| T/O | T/O 55 55 67
blkjack-3| 2 |T/O| 1213 | 470 340 70 98
(c) Simple Industrial Circuits
di[11 | 6 [T/O | T/O i3 i3 13
d2(15 | 10 11 13 45 30 39
d3f 12 | 15 21 23 100 100 130
d4 8 | 11 | T/O| T/O 39 38 60
ds| 7 | 12 16 15 34 37 37

(T/O = Timeout of 5000 sec)

introduction of the two heuristics for communication — early communication and
partial communication. The columns in the table are arranged in the same order.
The first column is the circuit name, followed by transition relation construction
time, vis, sequential POBDDs, naive parallelization, the parallel approach with
just early communication and finally with both techniques. The final column
has two parts — 8 CPUs and Simulated Seq, which report, respectively, the to-
tal reachability time in a parallel environment using 8 CPUs and the time in a
simulated sequential approach in an 8-CPU machine. The simulated sequential
approach is discussed in section Ml Note that many of the sequential results are
better than standard POBDD-based reachability because of the partition and
communication scheduling flexibility. The details of the processor utilization are
presented in Section using Gantt charts.

5.2 Efficiency Issues

Table [l is composed of three different sections. Section (a) and (c), respectively
shows the results on a few hard and easy industrial circuits. Section (b) shows the

34 D. Sahoo et al.

Table 2. Time (in sec) for Invariant Checking on the Industrial Circuits using different
redundancy value in a parallel and sequential framework

redundancy [6]
0.3 0.5 0.7

Parallel| seq |Parallel|seq |Parallel| seq
cl 227 | 288 | 226 |286| 229 |292
c2 73 386 | 917 |917| 2569 |2570
c3 1492 (1493 62 |228| 1407 |T/O
c4 2967 29701 161 |509| 158 |520
dl 26 28 13 13 92 138
d2 30 40 30 39 31 39
d3 53 67 100 |130{ 102 |133
d4 29 37 38 60 38 59
d5 13 13 37 37 37 38
s1269b-1| 61 73 60 72| 165 |183
sp-prod 446 | 510 | 440 (5101 259 | 260

(T/O = Timeout of 5000 sec)

results on a few VIS-verilog benchmark circuits. As can be seen from the table,
the resulting parallel run times with all the heuristics, i.e, the last column of the
table have no timeouts. They are also clearly superior to classical partitioned-
reachability. The proposed parallel approach will all heuristics, is also usually
superior to the less sophisticated parallel techniques. The parallel approach with
only early communication, i.e the 6th column in Table[I] often works well and
have fewer timeouts compared to the naive parallel approach. Consider the cir-
cuit blkjack-3, which represents the best scenario, where the results improve with
each successive addition of the heuristics. We find that the parallel approach is
usually more robust than the sequential approaches. Note that the last column
shows the results of simulated sequential approach in an 8-CPU machine to
demonstrate the parallelism achieved. The corresponding uniprocessor results
are 2-6 times worse than the simulated sequential approach. We find that the
parallelism is very small and hope to improve it in a future work.

Scheduling is a Problem Even on Easy Functions: Consider the results
of some properties from an industrial design whose OBDDs are fairly small as
shown in Table [l (¢). The partitioned reachability for such cases gets harder.
Both the standard sequential POBDD-based reachability and naive parallel
reachability falls in the trap of an inefficient computation. An early commu-
nication often helps in this case, as can be seen from the table. However, both
early communication and partial communication are needed to finish all the cir-
cuits. The reachability of small circuits using 8 partitions might contribute to
some overhead in the partitioned reachability approaches.

Further, we will like to comment on the relative speedup of the multi-threaded
8-CPU approach over the simulated sequential approach. This speedup is not
only proportional to the algorithm but also to the choice of partitioning variables.

A New Reachability Algorithm for Symmetric Multi-processor Architecture 35

Table 3. Time (in sec) for Invariant Checking on the Industrial Circuits using the
non-deterministic and the deterministic program

Time in sec
ckts non—det| det

(a) Industrial Circuits

cl| T/O 227
c2| 962 917
c3| 809 62
c4| 903 161

(b) Simple Industrial Circuits

d1| 13 13
d2| 24 30
d3| 84 100
d4| 30 38
d5| 13 37

(T/O = Timeout of 5000 sec)

For the same algorithm, even though the same partitioning variables may be
provided to both the approaches, depending on the splitting choices, the amount
of parallelism that is generated can vary dramatically. For example, in Table
it can be seen that for almost half of the entries, by varying redundancy and
balancedness, the two parameters that are calculated for evaluating partitioning
variables, the amount of parallelism that is generated can vary dramatically.
This points to the need for an approach which can dynamically evaluate different
choices in deciding the partitioning variables. Such an idea is motivated by the
strong results presented in Sahoo et al. [8], where it was shown the successful
BDD decisions can be taken if we generate different short traces of reachability
computation for each choice and then make the required decision.

Finally, we show that the deterministic version of our program doesn’t loose
the performance by a great margin to the non-deterministic version. Table [3]
shows the results of Invariant checking on the industrial circuits using both the
non-deterministic and the deterministic version of our program. As we can see
from the table, the performance of non-deterministic program is very similar to
the deterministic program in the simple circuits, i.e. Table 3 (b). However, the
performance of the deterministic program is better than the non-deterministic
version in the hard circuits in Table Bl (a). Therefore, we strongly prefer the
deterministic version to the non-deterministic version.

5.3 Improving Parallelism

Consider the reachability analysis of s1269b-5 from the VIS Verilog benchmark
suite. As shown in Table [Tl (b), we perform reachability analysis using 8 parti-
tions, each of which runs in a separate thread.

Figure [2 shows the Gantt charts of three parallel reachability analysis on
s§1269b-5 circuit. We use the three charts to show the effect of the two heuris-

36 D. Sahoo et al.

2 || T - e
S B | e pron
I £ £
hat <} °
= = =
E | ‘ | ‘

| l 3 1l l &

(a) (b) (c)

Fig. 2. Parallel Reachability with successive addition of each heuristics

tics added successively to the reachability algorithm. Figure 2(a) shows Gantt
chart of the naive parallel reachability. Figure ((b) shows the Gantt chart of
reachability analysis when early communication is allowed. Figure 2(b) shows
the Gantt chart of reachability analysis when both early communication and
partial communication are allowed. Each partition is represented by a vertical
broken line. The filled segment represents the cpu time for the partition to per-
form a computation. At the end of each such stage, a small cross indicates the
communication of states to other partitions. A break in the line indicates that
the corresponding processor is idle. However, in a multi-threaded uniprocessor
environment, the processor can immediately schedule another thread for execu-
tion. The total time is the reachability time on a multi-processor machine. As
we can see from the figure, more gaps are being filled with the addition of each
heuristic. This shows a clear trend of improved parallelism in each case.

6 Conclusion

Partitioning based state space traversal approaches where reachability on each
partition is processed independently appear very suited for parallelization. How-
ever, we find that a naive parallelization of such algorithms is often ineffective.
In this paper we discuss an algorithm suitable for parallel reachability on a sym-
metric multi-processing architecture. We show that in most cases our algorithm
achieves good speedup in a multi-processor shared memory environment, com-
pared to the corresponding sequential run. Further, the parallel algorithm is
significantly faster than both the standard sequential reachability algorithm as
well as the existing partitioned approaches especially when the property is er-
roneous. We have made the multi-threaded program behavior deterministic. We
found that the performance of both the non-deterministic and the deterministic
program is similar.

Our investigation, one of the first in the area of a parallel reachability al-
gorithm exploiting SMP architecture reveals that there are significant areas of
performance improvements. These include improving scheduling of threads on

A New Reachability Algorithm for Symmetric Multi-processor Architecture 37

various processors, selecting window functions that can potentially enhance par-
allelism, and communication strategies between threads to decrease number of
idle CPUs.

Acknowledgments

The authors thank Fujitsu Laboratories of America, Inc for their gifts to support
the research. Prof. Dill thanks the NSF for support via grants CCR-012-1403.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

References

[1] Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Proc. IBM Workshop on Logics of Programs.
Volume 131 of Lecture Notes in Computer Science. (1981)

[2] McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)

[3] Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35 (1986) 677-691

[4] Coudert, O., Berthet, C., Madre, J.C.: Verification of sequential machines based
on symbolic execution. In: Proc. of the Workshop on Automatic Verification
Methods for Finite State Systems. (1989)

[56] Jain, J.: et. al., Functional Partitioning for Verification and Related Problems.
Brown/MIT VLSI Conference (1992)

[6] Narayan, A.: et. al., Reachability Analysis Using Partitioned-ROBDDs. In: IC-
CAD. (1997) 388-393

[7] Iyer, S., Sahoo, D., Stangier, C., Narayan, A., Jain, J.: Improved symbolic Verifi-
cation Using Partitioning Techniques. In: Proc. of CHARME 2003. Volume 2860
of Lecture Notes in Computer Science. (2003)

[8] Sahoo, D., Iyer, S.: et. al., A Partitioning Methodology for BDD-based Verifica-
tion. In: FMCAD. (2004)

[9] Stern, U., Dill, D.L.: Parallelizing the murphy verifier. In: CAV. (1997)

[10] Stornetta, T., Brewer, F.: Implementation of an efficient parallel BDD package.
In: DAC. (1996) 641-644

[11] Garavel, H., Mateescu, R., Smarandache, 1.: Parallel state space construction
for model-checking. In: SPIN workshop on Model checking of software, Springer-
Verlag New York, Inc. (2001) 217-234

[12] Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achieving scalability in
parallel reachability analysis of very large circuits. In: CAV. (2000)

[13] Yang, B., O’Hallaron, D.R.: Parallel breadth-first bdd construction. In: sym-
posium on Principles and practice of parallel programming, ACM Press (1997)
145-156

[14] Cabodi, G., Camurati, P., Lavagno, L., Quer, S.: Disjunctive partitioning and
partial iterative squaring: An effective approach for symbolic traversal of large
circuits. In: DAC. (1997) 728-733

[15] Pixley, C., Havlicek, J.: A verification synergy: Constraint-based verification. In:
Electronic Design Processes. (2003)

38 D. Sahoo et al.

[16] Sahoo, D., Jain, J., Iyer, S.K., Dill, D.L., Emerson, E.A.: Multi-threaded reacha-
bility. In: To appear In DAC. (2005)

[17] Ravi, K., Somenzi, F.: High-density reachability analysis. In: ICCAD. (1995)
154-158

[18] Somenzi, F.: CUDD: CU Decision Diagram Package ftp://vlsi.colorado.edu/pub
(2001)

[19] VIS: Verilog Benchmarks http://vlsi.colorado.edu/~ vis/ (2001)

	Introduction
	Preliminaries
	Improving Parallelism in the Reachability Analysis
	Early Communication
	Partial Communication
	Parallel Reachability Algorithm
	Termination Condition

	Engineering Issues
	Experimental Results
	Overview of Table
	Efficiency Issues
	Improving Parallelism

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

