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Abstract. This paper presents an efficient method to avoid memory
explosion in symbolic model checking through the use of partitioning
techniques. Dynamic repartitioning of Partitioned OBDDs (POBDDs) is
investigated to enhance the efficiency of symbolic verification techniques.
New and improved algorithms are presented for reachability based in-
variant checking and for model checking a fraction of CTL that is found
to be most important in practice. These algorithms hinge on dynami-
cally repartitioning the state space and exploit the partitioned nature
of the data structure. The effectiveness of the partitioning approach is
demonstrated on both proprietary industrial designs as well as public
benchmark circuits. Notably, the approach is able to verify, and in some
cases falsify, properties of interest in industry on large designs which were
otherwise intractable for verification by other state-of-the-art tools.

1 Introduction

Computation Tree Logic (CTL) [6] has proved to be a popular specification
language for expressing properties for formal verification of designs, especially
hardware. Model checking [6,7] is the prominent automatic formal verification
methodology. Reduced Ordered Binary Decision Diagrams (ROBDDs) [4] cur-
rently serve as the data structure of choice during symbolic model checking [13],
because they have the desirable property of being canonical as well as manip-
ulable. ROBDDs have efficient representations for many functions of practical
interest. Unfortunately, some applications require representation of functions
that only have exponential ROBDD size. This limits the complexity of problems
that can be attacked by ROBDDs.

A more efficient representation was proposed through the use of Partitioned-
ROBDDs (POBDDs) [12] especially for large designs. In this approach, different
partitions of the Boolean space are allowed to have different variable orderings
and only one partition needs to be in memory at any given time. In this paper,
we extend and improve this approach to address the following issues.
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Firstly, we propose the use of dynamically Partitioned-OBDDs. This parti-
tioning technique dynamically varies the number of partitions that are created
and is thereby able to avoid memory explosion. Theoretical evidence [2] suggests
that representations using this approach can be exponentially more compact
than an approach using a fixed constant number of partitions. We incorporate
this dynamic repartitioning in reachability based invariant checking as well as
model checking for a portion of CTL.

Secondly, we also propose a new algorithm for model checking a significant
portion of CTL. This portion is defined as those formulae, which can be repre-
sented without the use of the greatest fixpoint in existential normal form. More
precisely, we efficiently handle the temporal modalities EX, EF and their du-
als as well as EU . Such formulae are found to be a significant fraction of the
properties that are of practical interest to hardware designers. In particular, this
includes invariants as well as FSM deadlock avoidance properties.

It has been previously shown [16,15] that POBDDs can be used analogously
to OBDDs for most applications. However, a straightforward implementation
using the conventional algorithm leads to excessive overhead in the form of disk
accesses, BDD variable reorderings, etc.. The proposed algorithm leverages the
partitioned nature of the data structure in order to significantly reduce these
overheads. This is, to our knowledge, the first algorithm to take full advantage of
the ideas of partitioning at an algorithmic level in the model checking procedure.

Thirdly, though it may not be obvious, use of partitioning based represen-
tation is not practical at all if one can not devise a practical and competitive
strategy to discover, when appropriate, a path leading to an erroneous state. We
provide a novel method to determine the same. In many cases, this method may
be able to provide an error trace more efficiently than using classical OBDD
based methods.

To our knowledge, this is one of the few papers demonstrating the use of par-
titioning based data structures in an industrial setting. On many public bench-
mark circuits also it shows non-linear gains in space and time, often an order
of magnitude or more, over the best known state of the art tool (VIS). Thus,
we demonstrate that BDD-based verification can be expanded over the limits of
classical ROBDD approaches.

1.1 Comparison with Related Work

The use of partitioned transition relations [5] was proposed to control the size of
symbolic representation of transition relations. The set of latches is divided into
different groups which control the ROBDD-size of the transition relation and
allow early quantification as well. In POBDDs, the entire Boolean space is parti-
tioned. Thus, in order to distinguish the sense in which partitioning is performed,
it would be more appropriate to call the former as clustered-transition rela-
tions. Indeed, the two approaches are orthogonal and these “clustered”-transition
relations are used in the image computation of our approach as well.

Recently, a method for distributed model checking was studied by [10,9]. It
parallelizes the classical symbolic model checking algorithm using the partition-
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ing approach suggested in [15]. This approach uses slicing, which is similar to
partitioning, with the objective of doing model checking in a distributed fash-
ion. This approach does not address issues related to costs of communication
and variable ordering in different partitions. In particular, this approach par-
titions the computation into a fixed number of fragments equal to the number
of processors available in the distributed environment. However as noted in the
literature [2], a partitioning scheme with k partitions can be exponentially more
succinct than one with just k − 1 partitions. Thus, the apriori selection of the
number of fragments greatly limits the efficiency of the partitioned data struc-
ture. Indeed the gain from such a static method would be obtained substantially
from parallelization rather than from the inherent algorithmic advantages offered
by the POBDD data structure.

In contrast, our algorithms effectively capitalize on the partitioned nature of
the data structure. We require only one partition to be in memory for any image
computation, and each partition can be independently ordered. Significantly,
this approach incorporates a dynamic repartitioning scheme which allows for an
unbounded number of partitions to be automatically created when necessary. At
the same time, we show how to drastically cut down the number of instances
of inter-partition communications as compared to the classical approach. This
reduces the number of transfers and reorderings of large BDDs between partitions
and is found to be a significant gain in practice. We also address the issue of
efficient determination of error trace in the presence of partitioning.

In the rest of this paper, we first give an overview of POBDDs and the
appropriate verification techniques. Then, we describe the proposed algorithms
followed by the experimental results and finally conclusions.

2 Preliminaries

The idea of partitioning was used to discuss a function representation scheme
called partitioned-ROBDDs in [12,11] which was extensively developed in [16].
Definition. [16] Given a Boolean function f : Bn → B, defined over n inputs
Xn = {x1, . . . , xn}, the partitioned-ROBDD (henceforth, POBDD) representa-
tion χf of f is a set of k function pairs, χf = {(w1, f1), . . . , (wk, fk)} where,
wi : Bn → B and fi : Bn → B, are also defined over Xn and satisfy the following
conditions:
1. wi and fi are ROBDDs respecting the variable ordering πi, for 1 ≤ i ≤ k.
2. w1 ∨ w2 ∨ . . . ∨ wk = 1
3. wi ∧ wj = 0, for i �= j
4. fi = wi ∧ f , for 1 ≤ i ≤ k The set {w1, . . . , wk} is denoted by W . Each
wi is called a window function and represents a partition of the Boolean space
over which f is defined. Each partition is represented separately as an ROBDDs
and can have a different variable order. Most ROBDD based algorithms can be
adapted easily for POBDDs.

Partitioned-ROBDDs are canonical and various Boolean operations can be
efficiently performed on them just like ROBDDs. In addition, they can be ex-
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ponentially more compact than ROBDDs for certain classes of functions. The
practical utility of this representation is also demonstrated by constructing ROB-
DDs for the outputs of combinational circuits [16]. An excellent comparison of
the computational power of various BDD based representations and partitioned-
ROBDDs may be found in [2].

2.1 Reachability and Model Checking

We omit the syntax of CTL as it is widely known and readily available in the
literature. We shall only note that it is possible to express any CTL formula in
terms of the Boolean connectives of propositional logic and the existential tem-
poral operators EX, EU and EG. Such a representation is called the existential
normal form.

Model Checking is usually performed in two stages: In the first stage, the
finite state machine is reduced with respect to the formula being model checked
and then the reachable states are computed. The second stage involves comput-
ing the set of states falsifying the given formula. The reachable states computed
earlier are used as a care set in this step.

Since there exist computational procedures for efficiently performing Boolean
operations on symbolic BDD data structures, including POBDDs, model check-
ing of CTL formulas primarily is concerned with the symbolic application of the
temporal operators. EXq is a backward image and uses the same machinery as
image computation during reachability, with the adjustment for the direction.
EpUq (resp. EGp) has been traditionally represented as the least (resp. greatest)
fixpoint of the operator τ(Z) = q ∨ (p ∧ EXZ) (resp. τ(Z) = p ∧ EXZ).

Invariants are CTL formulas of the form AGp, where p is a proposition, and
can therefore be checked during the initial reachability computation itself.

The standard reachability algorithm is based on a breadth-first traversal of
finite-state machines [8,13,19]. The algorithm takes as inputs the set of initial
states, I(s), expressed in terms of the present state variables, s, and a transition
relation, T (s, s′, i), relating the set of next states, N(s′), that a system can reach
from a state s on an input i. The transition relation, T (s, s′, i), is obtained by
taking a conjunction of the transition relations, s

′
k = fk(s, i), of the individual

state elements, i.e., T (s, s′, i) =
∏

(s
′
k = fk(s, i)). Given a set of states, R(s),

that the system can reach, the set of next states, N(s′), is calculated using the
equation N(s′) = ∃s,i[T (s, s′, i) ∧ R(s)]. This calculation is also known as image
computation. The set of reached states is computed by adding N(s) (obtained
by replacing variables s′ with s) to R(s) and iteratively performing the above
image computation step until a fixed point is reached.

2.2 Reachability Using POBDDs

In the context of Partitioned-OBDDs, we can derive a transition relation, Tjk,
from partition j into partition k by conjoining T with the respective window
functions as Tjk(s, s′, i) = wj(s)wk(s′)T (s, s′, i).
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preImgPart(Bdd, j) {
return preImage(Bdd, Tjj)

}

preImgComm(S){
result = ∅
foreach (partition j)

temp = preImage(Sj , Tjj)
foreach (partition k �= j)

tempk = temp restricted to wk

reorder BDD tempk from partition order j to order k
resultk = resultk ∨ tempk

end for
end for
return result

}

Fig. 1. Image Computation Algorithm

The Partitioned-ROBDD based traversal algorithm uses the ROBDD based
algorithm in its inner loop to perform fixed point on individual partitions.
Let us assume that we are given a partitioned-ROBDD representation χR =
{(wj(s), Rj)|1 ≤ j ≤ k}. If we take the image of Rj under Tjj , we obtain
Nj(s′) = ∃s,i[wj(s)wj(s′)T (s, s′, i)Rj(s)]. Since wj(s′) is independent of the vari-
ables that are to be quantified, it can be taken out of existential quantification,
giving us Nj(s′) = wj(s′)[ ∃s,i[wj(s)T (s, s′, i)Rj(s)] ]

The image of Rj under Tjj lies completely within partition j. Similarly, the
image, Nl of Rj under Tjl will lie completely within partition l. This observation
motivates us to define the image computation in terms of the image computed
within the same partition and the image communicated to another partition. The
former will be called ImgPart and the latter will be called as ImgComm. Anal-
ogously, we define the pre-image computations preImgPart and preImgComm.
They are illustrated in the pseudo-code shown in Fig 1.

The pre-image, i.e. computeEX, is then obtained by their union, as
preImage(p) :=

∨
i preImgPart(pi, i) ∨ preImgComm(p).

The pseudo-code for computeEX, as applied to POBDD, is in Fig 2a.
Notice that two approaches are possible for the computation of the commu-

nicated image: In the first, an image is computed from partition j into each
partition k �= j separately, using the transition relation Tjk. Alternately, one can
compute the image from partition j into the boolean space that is the comple-
ment of partition j, denoted by j. The former has the advantage that the BDD
representations of the transition relations Tjk are much smaller, but in return it
has to perform O(n2) image computations. We use the second method in defin-
ing imgComm. This method requires only O(n) image computations, but each
of these is followed by O(n) restrict operations.
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3 Improved State Space Traversal

In this section, we will describe the use of a dynamic partitioning scheme where
the number of partitions can be increased or decreased as the computation pro-
gresses. This can be shown to be exponentially more succinct than the use of
a fixed constant number of partitions. We also present a novel algorithm for
computing a path from a state with an error to the initial state.

3.1 Dynamic Repartitioning

Dynamic repartitioning of the state space is triggered whenever the size of any
partition under observation crosses a certain threshold. The partitioning vari-
ables are selected using the history of previously computed windows. Reparti-
tioning is performed by splitting the given partition by cofactoring the entire
state space based on one or more splitting variables until the blow-up has been
ameliorated for each partition, which was created so far. Initially, the partition-
ing is done using one splitting variable. The choice of this variable is as explained
before. At this point, each new partition is checked to see whether the blow-up
has subsided. If not, repartitioning is called again on that partition until the
blow-up has subsided in all partition.

Sometimes it is found that the blow-up in the BDD-sizes during an interme-
diate step of image computation is a temporary phenomenon which eventually
subsides by the time the image computation is completed. In such a case the in-
vocation of dynamic global repartitioning of the state space could create a large
number of partitions, whose BDD-sizes become eventually very small. These
partitions create an unnecessary amount of computational overhead. Hence, it
is advantageous to create these partitions locally only for that particular image
computation and then recombine them before the end of the image computa-
tion. To create these local partitions, we can cofactor the state space using the
ordered list of splitting variables that was generated earlier.

Our algorithm for checking invariants performs successive steps of image
computation on each Rj under Tjj . Since these steps, imgPart, of image compu-
tation add states only within the same partition, and since different partitions
are disjoint, we are guaranteed that the same state is not being visited multiple
times within different partitions. Once a fixpoint is reached within a partition
j, the procedure imgComm is used to communicate the new set of states to the
partition l for for 1 ≤ l ≤ k and l �= j. At any stage, where new states are
added into the reached states set, we check for the violation of the invariant
presented. If failure is detected, we stop and call the error trace mechanism to
retrieve a path from the initial states to an error state. Otherwise, we proceed
with traversing more states until the entire state space is exhausted, at which
point, the formula has passed.

3.2 Tracing Erroneous Paths

In order to obtain a path from an error state e back to an initial state i, the
naive idea would be to compute successive preImages beginning with e, until
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i is reached. After a few steps of computing backward images, one would be
faced again with a rapidly increasing BDD size. In order to avoid this blow-up
in BDD-size, we need to be able to isolate a set of candidate predecessors for
the current state so that the next preImage computation does not have have to
handle too large BDDs. In the case of ROBDDs, this is accomplished by keeping
the so called “onion rings” or the frontier of states encountered during each
image computation.

In the partitioned setting, the set of possible predecessors may be spread
across multiple partitions. Thus it is possible to store these frontier states in
a partitioned manner. Therefore the backward image can be computed with
respect to only a portion of the frontier states.

Thus, the image computations need to be recorded in a tree-like data struc-
ture in order to be able to find the correct subspace for the backward image.
For each state s in the set of reachable states S, this tree contains the image
computation when the state s was first added to the reachable set S. The struc-
ture stores the information required to trace a backward path as follows: For
each partition of the boolean space, its frontier is defined as the states added to
this partition by the most recent invocation of imgComm and the subsequent
imgPart operations. Each such frontier is actually a collection of sets, each rep-
resented as a BDD, whose set union represents the set of all states that have
been reached in this partitions for the first time, but have not yet been used for
communication to other partitions. Thus, the number of BDDs in this frontier
can be, in the worst case O(M + di) where M is the number of partitions, and
di is the depth of the fixpoint in partition i. For the entire graph this can, in the
worst case be, O(M ∗ (M + dmax)).

To retreive a path from an initial state to a state s, we do the following:

1. Obtain the location in the computation tree that contains s.
2. Take the predecessor frontier of this location in the tree, and compute a

backward image into this frontier to find one or more predecessor states.
3. Pick one such predecessor state.
4. Repeat steps 2 and 3 on successive states until an initial state is reached.

This gives us the backward path from state s with an error to an initial state.
Advantages of partitioned error trace: Notice that in the case of ROBDDs,
the onion rings can get large in size. An effect of having these large sized rep-
resentations is that image computations get more expensive. As noted before,
ignoring the frontier states and performing a backward reachability is even more
expensive, and in that case the backward path can be longer in length too.

Observe that partitions can often be assymetric with respect to the space
and time required for performing image computations on them. Therefore, in
the presence of multiple paths from an error state to the initial states, it would
be advantageous to compute the shortest path in terms of computational effort
rather than the length of the path. In order to do this, we annotate the nodes
of the tree with information about the amount of time the corresponding image
computation required. These annotations can be used as an indicator of how
much time the backward image would take, and thus, in step 3 above, they can
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assist in reducing the time spent in finding a more practical path back to the
initial states.

4 Model Checking Fixpoint Formulas

As mentioned in section 2.2, the modalities EX, EU and EG suffice to represent
any CTL formula in existential normal form.

In particular, we note that the deadlock property AG(p → EFq) can be rep-
resented in the “greatest fixpoint free” fragment of CTL Since invariant checking
and deadlocks form a large fraction of formulas that are of practical interest to
designers, we will first look at the least fixpoint operator E(pUq). Note that, p
and q are not restricted to propositions and can be any CTL formulae.

4.1 Why Communication Is Expensive

It is important to notice that there are fundamental differences between the
two image operations - imgPart and imgComm. Observe that imgPart(Rj) is in
the same partition j as the original BDD Rj and therefore only one partition
needs to be in memory for its computation. On the other hand, imgComm(Rj)
computes an image into j, i.e., every partition other than j, therefore it needs to
finally access and modify every partition. This gives rise to two important issues
with respect to communication.

Firstly, the reached state set of every partition needs to be accessed. In the
case of large designs, where the BDDs of even a single partition can run into
millions of nodes, this usually means accessing stored partitions from the disk.

Secondly, the BDD variable order of the computed imageset must be changed
from the order of the jth partition to that of each of its target partitions, before
the new states can be added to the reached set in the target. Again, for large
designs, reordering a large BDD can be an extremely expensive operation.

In this context, image computation within a partition, ImgPart, is a rela-
tively inexpensive operation as compared to communication between partitions,
ImgComm. Therefore, in the interest of minimising transfer of BDDs from one
partition to another, we need a new algorithm that would decrease the number
of invocations of ImgComm whenever possible.

An associated advantage of performing image computation repeatedly within
a partition before communicating, is that it allows some errors to be caught much
earlier. When a formula fails in any partition, it becomes unnecessary to explore
the other partitions any further. In this manner, it may be possible to locate the
error by exploring a smaller fraction of the state space than otherwise necessary.

In the rest of this section, we will present, in the context of POBDDs, the
improved model checking algorithm designed to take advantage of partitioning.

4.2 Evaluating the Least Fixpoint E(pUq)

The classical algorithm for the least fixpoint operator is presented in Figure 2a
in terms of the POBDD data structure.
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computeEX(p) {
R← p
forall (partitions j)

Sj ← preImgPart(Rj , j)
end for
S ← S ∨ preImgComm(R)
output S

}
computeEU(p, q) {

S ← q and S.old← φ
repeat

S.old← S
S ← q∨(p∧computeEX(S))

until(S = S.old)
output S

}
a) Classical Algorithm

computeEU(p, q) {
S ← q and S.old← φ
repeat

S.old← S
forall (partitions j)

repeat
Sj .old← Sj

Sj ← Sj∨(pj∧preImgPart(Sj , j))
until(Sj = Sj .old)

end for
S ← S ∨ (p ∧ preImgComm(S))

until(S = S.old)
output S

}

b) New Algorithm

Fig. 2. Algorithms for E(pUq) using Partitioned-OBDDs

Notice that in the computation of E(pUq), the preImage computation forms
the bulk of the work performed by the algorithm. As noted in section 4.1, the cost
of performing communication during every preImage is quite large. This penalty
is due to resources required to transfer BDDs between partitions, to reorder the
BDDs before such transfer can occur and to fetch the partitions from storage
in order that the new states can be conjuncted with p and disjuncted with q.
Therefore, it is important to postpone the invocation of preImgComm, i.e., to
perform as many image computations as possible locally within each partition
before communication is performed across partitions.

A New Algorithm for E(pUq)

In this section we describe a new algorithm for model checking least fixpoint
CTL formulas and sketch a proof of its correctness. Algorithm 2b for computing
the set E(pUq) is designed to take advantage of the partitioned nature of the
data structure. Notice that we explore each partition independently of the others
until they reach a fixpoint individually. Then, we perform the communication
across partitions.

This allows us to keep just one partition in memory at any given time. It
also greatly reduces the number of communication induced BDD transfers, disk
accesses and variable reordering calls.

Before proving the correctness of the new algorithm, we define some notation.
Let the set of states S at the end of the kth iteration of the outermost repeat-until
loop in algorithm 2b be represented by Sk.

For every state s |= E(pUq), either s |= q or there exists a sequence of states
s0, s1, . . . , sk that has the smallest length k �= 0 such that s0 = s, sk |= q,
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∀i < k : si |= p and ∀i < k : si ∈ preImage(si+1). Such a sequence of states is
called a witness for the inclusion of s in E(pUq), and k is its length.

For the sake of convenience, we will use the symbol for a formula to also rep-
resent the set of states it represents. We first show that algorithm 2b terminates.

Lemma 1. (Termination) For any integer i, Si+1 ⊇ Si. The inequality is strict
unless a fixpoint is reached.

The proof is evident from the construction of sets Sk. Since any step of the
procedure must add at least one new state to the set S, we have termination
at the end of at most as many iterations as there are states in the space under
consideration.

Theorem 1. The procedure computeEU of algorithm 2b, given the set of states
corresponding to formulas p and q as inputs, terminates with the output S being
precisely the set of states that model the formula E(pUq).

Proof: Soundness: We prove by induction on the sets Sk that the procedure
is sound, i.e., at all times S |= E(pUq). This clearly holds for any state in the
initial set S0 = q, since any state satisfying q also satisfies E(pUq).

Assume, it holds for Si, i.e., that Si |= E(pUq). Consider a state s ∈
Si+1 − Si. Then, by construction of Si+1 from Si, we have s |= p. Either s
is added during some step of the inner fixpoint loop or it is added in a step of
communication, i.e., s ∈ preImgComm(Si).

Suppose s is added in the inner fixpoint loop of some partition j. Since Si

is a POBDD, let us call the projection of Si in partition j as Si
j . From before,

we know preImgPart(Si
j , j) ⊆ preImgPart(Si) ⊆ preImage(Si). Also notice

that the variable for the inner fixpoint is initialized to Si
j . Therefore, every state

added in the first step of the inner fixpoint models p∧EX(E(pUq)) and therefore
models E(pUq). Consequently, we can show by induction that any state added
in the inner fixpoint loop for partition j must model E(pUq).

In the second case, s was added in some step of the communication. Con-
sidering that preImgComm(Si) ⊆ preImage(Si), any state added in the com-
munication step models p ∧ EX(E(pUq)), and therefore E(pUq). In particular,
s |= E(pUq).

Consequently, Si+1 − Si |= E(pUq) and the soundness of the procedure
follows by induction.

Completeness: We next show the completeness, i.e., that every state of
E(pUq) is indeed in set S. Let T k be the set of states, whose inclusion in E(pUq)
is witnessed by a path of length at most k. We prove by induction on k that
T k ⊆ S. In the base case, this trivially holds because T 0 = q = S0 ⊆ S.

Now, let us assume that T i ⊆ S. For any state s ∈ T i+1 consider the sequence
of states s0 = s, s1, . . . , si+1 that witnesses its inclusion in E(pUq). We will show
that s ∈ S.

Now, the sequence s1, . . . , si+1 is a witness for s1, therefore s1 ∈ T i ⊆ S. In
particular, there exists a smallest j so that s1 ∈ Sj . We know that s |= p and
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s ∈ preImage(s1) ⊆ preImage(Sj). From the definition of Sj and Algorithm 2b,
we have that

Sj+1 ⊇ Sj ∨ (p ∧ preImgPart(Sj)) ∨ (p ∧ preImgComm(Sj)
= Sj ∨ (p ∧ (preImgPart(Sj) ∨ preImgComm(Sj)))
= Sj ∨ (p ∧ (preImage(Sj))).

Therefore, s ∈ Sj+1 ⊆ S, whereby T i+1 ⊆ S. By induction, this gives us
E(pUq) ⊆ S.

Together with lemma 1, this proves that algorithm 2b terminates with the
set S = E(pUq).

4.3 Evaluating the Greatest Fixpoint EGp

The model checking of EGp is done by computation of the greatest fixpoint
of the operator τ(Z) = p ∧ EXZ. As in the case of least fixpoint, one would
like to postpone the communication until after each partition has reached its
individual fixpoint independent of the other partitions. However, the description
of this is considerably more complex and thus far we have only implemented a
simple, classical, version of the greatest fixpoint algorithm for EGp in terms of
POBDDs.

Even so, most specifications of interest in practice are expressible in the frag-
ment of CTL free of greatest fixpoints. For e.g., deadlock avoidance properties
of the form AG(p → EFq) and invariants can both be expressed in existen-
tial normal form using only least fixpoints. Therefore, we find that the inability
to postpone communications for the greatest fixpoint does not impose a great
disadvantage in most practical applications.

5 Experiments

We implemented dynamic partitioning-based model checking using the CUDD-
package [18] (version 2.3.0) for OBDD representation. We use the routines from
VIS [3] (version 1.4) for reading in the design and to build the initial transition
relation using the IWLS95 method [17]. Our implementation can be thought of
as building on top of VIS and therefore a comparison with VIS is natural.

We found empirically that for our benchmarks VIS-2.0 using the MLP [14]
method performs worse than VIS-1.4 using the IWLS95 method, probably due
to known problems in preimage computation. Thus, we compared our methods
to VIS by using the IWLS95 method for both.

Benchmarks and Experimental Setup

For our experiments, we used the designs from the Vis Verilog benchmark
suite [1]. This suite also contains properties given in CTL formulas for verifi-
cation. We pick the properties which when expressed existentially are “greatest
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Table 1. Invariant Checking on Large Designs

Number of Peak Nodes Time (seconds)
Circuit Partitions VIS POBDD Gain VIS POBDD Gain
palu 4 371 K 150 K 2.5 253 102 2.5
product 4 919 K 116 K 7.9 1394 546 2.6
am2910 4 >1.52 M 187 K >81 >24h 1.2 K >72
rotate32 43 >825 K 640 K >1.3 >24h 8 K > 8.6
spinner32 60 >1.61 M 362 K >4.4 >24h 10 K >11.3
vsa16a 4 >1.02 M 722 K >14 >24h 22.6 K >3.8

fixpoint free”. On the entire benchmark suite this is found to cover about 80 %
of all properties, which is believed to be typical. Finally, we also used proprietary
designs that were made available by Fujitsu designers.

The parameters of VIS and CUDD are left unchanged at their default values.
Experiments on the public benchmarks were performed on dual-processor Xeon
2.2Ghz workstations with 2 GB of RAM running Linux. The invariant checking
as well as model checking experiments used dynamic partitioning. Both were run
with a timeout limit of 24 hours.

The peak number of live nodes is given by Peak Node. The CPU time is
measured in seconds and given as Time. The column denoted with Time Gain
(resp. Space Gain) describes the gain in time (space) of POBDDs over VIS.

Results on Invariant Checking. We compare our POBDD method to the
standard VIS approach on invariant checking in Table 1. Note that this table is
restricted to the largest entries (BDD-nodes > 300K) in the benchmark suite.
Our partitioned approach clearly outperforms the state-of-the-art VIS in time
as well as in space. Especially for the larger circuits the improvement is drastic,
since we complete the verification of four circuits that timed out using VIS.

Comparison with Static Partitioning It is natural to analyse what benefit
dynamic partitioning offers over static partitioning. In Fig. 3, we compare the
performance of the proposed dynamic partitioning based invariant checking ap-
proach with invariant checking based on the static partitioning method of [15]. In
particular, note that in the last case, vcrc32 8, the previous approach timed out
after 86,400 seconds whereas we are able to complete in about 12,000 seconds.

Results on Model Checking. The results on runtime and space requirements
in model checking are presented in Table 2.

POBDDs may not sometimes show their full potential on the smaller circuits
due to the overhead of creating and maintaining partitions. Nevertheless, the
results show that POBDD-based model checking can out-perform VIS even on
such cases in time as well as in space.

But, more important are the last few entries in the table, showing the harder
benchmarks. Here, the POBDD-based model checking clearly outperforms the
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Fig. 3. Comparison of Times taken (Normalized) by Different Partitioning Approaches
for Invariant Checking on some Large designs

Table 2. Model Checking on Large Designs

Number of Peak Nodes Time (seconds)
Circuit Partitions VIS POBDD Gain VIS POBDD Gain
product 4 919 K 108 K 8.5 1450 437 3.3
s1269b 4 2.3 M 317 K 7.2 7340 170 43.0
am2910 4 >4.9 M 127 K >38.2 >24h 324 >266
twoQ 6 >5.5 M 1.8 M >3.1 >24h 11.4 K >7.6
palu 12 >10.5 M 3 M >3.5 >24h 40.1 K >2.2
am2901 5 >5.7 M 1.94 M >2.9 >24h 45.4 K >1.9

classical approach and is able to even finish four of the designs that cannot be
finished within the given 24 hour timeout when using VIS.

It is also noteworthy, that the maximum peak BDD-size of one partition
is often an order of magnitude smaller than the maximum peak node size for
ROBDDs. We have observed that this reduction is in many cases more than the
number of partitions created.

Industrial Circuits The properties for industrial circuits were taken from
actual Fujitsu designs with sizes ranging from 2000 to 10000 flip-flops. Table 3
shows the summarized results for the comparison of POBDD-based model check-
ing with VIS for three different types of properties. For the first two properties,
Index range and full-case, the POBDD method is able to finish 11 (resp. 5) more
properties than the OBDD method.
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Table 3. Model Checking of Industrial Circuits (2,000 to 10,000 flip-flops)

Property Type Method Pass Fail Timeout
Index out of range POBDD 678 0 0

VIS 667 0 11
Full Case POBDD 16 0 0

VIS 11 0 5
Synchronizer data stability POBDD 2 4 0

VIS 0 2 4

For the third property, data stability, the POBDD method is actually able
to detect 2 failures more in addition to the passing properties than the OBDD
approach.

6 Conclusions

In this paper we addressed the memory explosion problem associated with model
checking through the use of dynamically Partitioned-OBDDs. We have shown
that it can be significantly better for problems, where the state of the art can
require impractically large computational resources. The significant advantage of
the proposed verification technique is its ability to control the memory required.
Usually, this has the added advantage of improvement in run-time, which is
primarily governed by the BDD-sizes. On large circuits we find that the com-
putational savings offered by the proposed partitioning based model checking
can be significant. We have shown cases, where our proposed method could fin-
ish in just a few thousand seconds, whereas other approaches timed out after a
day. Importantly, a new algorithm for invariant checking and for model checking
the fragment of CTL free of greatest fixpoint in the existential normal form are
presented. This can handle many more properties of practical interest and truly
exploit the theoretical and practical benefits of dynamically partitioned-OBDDs.
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