
On Partitioning and Symbolic Model Checking

Subramanian Iyer1, Debashis Sahoo2, E. Allen Emerson1, and Jawahar Jain3

1 University of Texas at Austin, Austin, TX 78712, USA
2 Stanford University, Stanford CA 94305, USA

3 Fujitsu Laboratoies of America, Sunnyvale CA 94085, USA

Abstract. State space partitioning-based approaches have been pro-
posed in the literature to address the state-space explosion problem in
model checking. These approaches, whether sequential or distributed,
perform a large amount of work in the form of inter-partition (cross-
over) image computations, which can be expensive. We present a model
checking algorithm that aggregates these expensive cross-over images by
localizing computation to individual partitions. It reduces the number
of cross-over images and drastically outperforms extant approaches in
terms of cross-over image computation cost as well as total model check-
ing time, often by two orders of magnitude.
Keywords: Symbolic Model Checking, BDD, state partitioning, CTL.

1 Introduction

Model checking is performed by means of successive backwards image computa-
tions. Image computation becomes difficult as the data structures representing
the state sets grow larger. Large state sets are a direct consequence of the state-
space explosion problem. Model checking is unable to handle data structures
when their size exceeds (roughly by an order of magnitude) what can be rea-
sonably handled in main memory. This frequently happens when handling large
designs.

From a practical standpoint, representing the state sets during model check-
ing symbolically using BDDs fails due to this excessive memory requirement.
Partitioned symbolic data structures have been proposed in the literature to
handle this memory explosion problem. Partitioning of the state space is found
to balance the trade-off between compactness and canonicity of symbolic BDD
representations. In such a framework, each partition of the state space may obey
a different variable order.

In a partitioned approach, the state space S is partitioned into subspaces
S1, S2, . . . Sn. This induces a disjunctive partitioning on the transition relation
T into the parts Tij which represents the set of transitions from states in a source
partition i to states in the destination partition j. The size of each such transition
relation can be further reduced by an implicitly conjoined implementation.

Each partition can be thought of as being the owner of a set of states. Tran-
sitions from each partition naturally comprise of two components - ones that
are wholly local to individual partitions, and ones that span multiple partitions.
Correspondingly, the computed image X comprises of a local component Xl and

a cross-over component Xc. The states corresponding to Xl may be computed
locally in each partition. On the other hand, the states in Xc arise out of tran-
sitions that originate at a state in one partition and terminate at a state in
another, thus, “crossing over” into the destination partition.

Computing cross-over component of the image is often significantly more
expensive than the local component for various reasons. Firstly, the cross-over
component involves transitions into a potentially larger subspace. Secondly, this
incurs the overhead of transporting these states to the partition that “owns”
them. Thirdly, the source and destination partitions likely obey different vari-
able orders, and therefore the communicated state set needs to be reordered,
which is a known difficult problem as representation sizes become large. Hence
even a small reduction in the number of cross-over images can result in a drastic
reduction in the total amount of time spent in cross-over images. Our experi-
mental results show that this is indeed the case.

The simplistic way of combining partitioning with the classical model check-
ing algorithm [1, 5], for instance, the distributed model checking algorithm of [2],
performs repeated exact images. Each such image computation requires a quadratic
number of image computations during each cross-over image computation.

Notice that the set obtained by performing operation EXl is a subset of the
actual image, and in this sense, can be thought of as an under-approximation
to EX. This allows for an efficient analysis of reachability [6] and a subset of
CTL [3] by replacing a sequence of EX operations by a sequence of the less
expensive EXl operations, interspersed with an occasional EXc to maintain
completeness.

The problem is trickier with greatest fix-points, e.g. the EG operator. The
EG operator and its dual AF are important in falsifying and verifying liveness
properties. In this case, the final result is the conjunction of successively smaller
supersets of the result. If operation EXc is ignored in pre-image computations,
then the result is a subset of the actual pre-image EX. Consequently, some states
get pruned early in the greatest fix-point computation for computing the set EG.
Since the convergence is on a sequence which is monotonically decreasing, these
states pruned early may be lost for ever. Consequently, EX cannot be replaced
by EXl as it compromises on soundness. An important question arises as to how
to compute greatest fix-points in the partitioned framework without having to
perform repeated frequent cross-over image computations.

In this paper, we propose an alternative piece-wise algorithm for model check-
ing CTL formulae in a partitioned setting that addresses these concerns. Our
approach exploits the separability of the local and cross-over components of im-
age computation. It performs a number of image computations locally within
each partition, and synchronizes occasionally by doing cross-over image compu-
tations only when a fix-point is reached locally in each partition.

If during state space traversal, each partition requires many steps of im-
age computation to reach a local fix-point, then the proposed algorithm shows
significant gain (which is proportional to the depth of the fix-point).

In section 2, we recall the notions of state space partitioning and the definition
of model checking. We present a simple partitioned version of the classical model

checking algorithm in section 3. Section 4 describes our modified algorithm de-
signed to localize computation by postponing cross-over image computations. In
the final section, we present our experimental results documenting the increased
efficiency of our technique.

2 Preliminaries

In this section, we briefly look at some background related to state space par-
titioning and image computation, leading up to a description of the classical
model checking algorithm in a partitioned framework.

2.1 State Space Partitioning

The idea of partitioning was used to discuss a function representation scheme
called partitioned-ROBDDs in [4] which was further extensively developed in [7].
Definition. [7] Given a Boolean function f : Bn → B, defined over n inputs
Xn = {x1, . . . , xn}, the partitioned-ROBDD (henceforth, POBDD) representa-
tion χf of f is a set of k function pairs, χf = {(w1, f1), . . . , (wk, fk)} where,
wi : Bn → B and fi : Bn → B, are also defined over Xn and satisfy the following
conditions:
1. wi and fi are ROBDDs respecting the variable ordering πi, for 1 ≤ i ≤ k.
2. w1 ∨ w2 ∨ . . . ∨ wk = 1
3. wi ∧ wj = 0, for i 6= j

4. fi = wi ∧ f , for 1 ≤ i ≤ k The set {w1, . . . , wk} is denoted by W . Each
wi is called a window function and represents a partition of the Boolean space
over which f is defined. Each partition is represented separately as an ROBDDs
and can have a different variable order. Most ROBDD based algorithms can be
adapted easily for POBDDs.

Partitioned-ROBDDs are canonical and various Boolean operations can be
efficiently performed on them just like ROBDDs. In addition, they can be ex-
ponentially more compact than ROBDDs for certain classes of functions. The
practical utility of this representation is also demonstrated by constructing ROB-
DDs for the outputs of combinational circuits [7].

In the rest of this paper, we only consider such window-based state parti-
tioning. The reason for this is that this representation is canonical, and allows
negation to be performed locally in each partition. Other schemes for dividing
the state sets, notably that of [2], need to perform a global synchronization
operation to perform negation and this can be expensive.

2.2 Model Checking

We omit the syntax of CTL as it is widely known and readily available in the
literature. We shall only note that it is possible to express any CTL formula in
terms of the Boolean connectives of propositional logic and the existential tem-
poral operators EX, EU and EG. Such a representation is called the existential
normal form.

Model Checking is usually performed in two stages: In the first stage, the
finite state machine is reduced with respect to the formula being model checked
and then the reachable states are computed. The second stage involves comput-
ing the set of states falsifying the given formula. The reachable states computed
earlier are used as a care set in this step. These two stages can be performed
either one after the other by -computing the reachable states first, or in an in-
terleaved manner, where the reachable states are computed on demand. For the
purpose of this paper, and to keep the discussion restricted to the model check-
ing algorithm, we shall assume that the set of reachable states is computed and
provided a priori.

Since there exist computational procedures for efficiently performing Boolean
operations on symbolic BDD data structures, including POBDDs, model check-
ing of CTL formulas primarily is concerned with the symbolic application of the
temporal operators. EXq is a backward image and uses the same machinery as
image computation during reachability, with the adjustment for the direction.
EpUq (resp. EGp) has been traditionally represented as the least (resp. greatest)
fix-point of the operator τ(Z) = q ∨ (p ∧ EXZ) (resp. τ(Z) = p ∧ EXZ).

We now examine the classical model checking algorithm, modified for a par-
titioned representation of the state sets. This is a simple algorithm, along the
lines of the distributed model checking algorithm of [2].

3 Classical Model Checking with Partitioning

First, a word on our terminology. Each partition owns states that are in its
subspace, as defined by its window function. Conversely, such states belong to
the partition. We say that a partition performs operations on sets that it owns.
The result of such operations may lie in a different subspace and may then
need to be transferred to one or more other partitions. It is important to make
this distinction between the partition where the operation is performed and the
partition to whom the result finally belongs, because they may obey different
variable orders4 and variable reordering is known to be expensive.

Since backward image computation is the basic unit operation in performing
model checking, we first examine image computation in the presence of parti-
tioning.

3.1 Partitioned Image Computation

Given a set of states, R(s), that the system can reach, the set of next states,
N(s′), is calculated using the equation N(s′) = ∃s,i[T (s, s′, i)∧R(s)]. This calcu-
lation is also known as image computation. Similarly, the backward image compu-
tation, which calculates the set of states N(s) from which the system can reach
given set of states R(s′), uses the equation N(s) = ∃s′,i′ [T (s, s′, i) ∧ R(s′)]. The
computation of EXp can be done using the backward image computation. State

4 Further, in case of a parallel implementation, such partitions may be physically on
different processors. For now, we ignore this detail.

space partitioning into n disjoint parts induces a partitioning of the transition
relation T into n2 parts Tjk consisting of transitions from a state in partition j

to a state in partition k. We can derive Tjk by conjoining T with the respective
window functions as Tjk(s, s′, i) = wj(s)wk(s′)T (s, s′, i). Thus we can express
the transition relation T (s, s′, i) =

∨
j

∨
k Tjk(s, s′, i) as an induced disjunctive

partitioning.
Figure 1 shows how to calculate EXp separately on each partitions. Here the

ComputeEX(Set R, Transition Relation T) {
foreach (partition j)

foreach (partition k)
PreImgjk(s) = ∃s′,i[Tjk(s, s′, i) ∧ Rk(s′)]

reorder BDD PreImgjk(s) from partition order k to order j
end for
Nj(s) =

∨
k

PreImgjk(s)
end for
output N

}

Fig. 1. Backwards Image Computation with Partitioning

set Rj is the set of states that represent p in partition j, and the set Nj represents
EXp in partition j which are computed by application of the transition relation
Tjk(s, s′, i).

To compute the pre-image, the n2 computations Tjk(Rk) need to be per-
formed, followed by n disjunctions as shown. Recall that when using a partitioned-
BDD to represent the set of states, each partition is maintained separately in
memory, under differing variable orders. It is therefore natural that the pre-
image of states in partition k under the transitions leading to each partition j,
i.e. the computation Tjk ∧ (Rk), is performed in partition k. Each partition k

thus computes states that potentially belong to every other partition. Subse-
quently the disjunction to obtain the pre-image lying with partition j, i.e. the
computation of

∨
k PreImgjk, is performed by partition j. As a consequence,

the set PreImgjk needs to be transferred from partition k to partition j, when
j and k differ.

We call these n2 − n computations as cross-over image computations, in
the sense that the source and destination partitions are different. It must be
emphasized that Cross-over image computation is expensive for various reasons:
First, a quadratic number of image computations need to be performed as above
and the BDDs need to be accessed from every partition. In the case of large
designs, where the BDDs of even a single partition can run into millions of
nodes, this usually means accessing stored partitions from secondary memory.
Then, the BDD variable order of the computed image set must be changed from
the order of the source partition to that of each of its target partitions, before
the new states can be added to the reached set in the target. Reordering large

BDDs can be very expensive. Finally, there may also be other overhead, for
eg., in the case of a parallel implementation there is the overhead of physically
transmitting a large number of these BDDs over the network.

Thus the cost of a cross-over image computation may be significantly greater
than that of a local image computation.

Next, we consider a simple partitioned model checking algorithm for the
fix-point operators.

3.2 Partitioned Computation of fix-points

The classical fix-point algorithms for E(pUq) and EGp as modified to use a
partitioned data structure are illustrated in Fig. 2. Notice that these rely on

computeEU(p, q) {
S := q and S.old := φ
repeat

S.old := S
temp := computeEX(S)
forall (partitions j)

Sj := qj ∨ (pj ∧ tempj)
end for

until(S = S.old)
output S

}
a) Least fix-point, E(pUq)

computeEG(p) {
S := p
repeat

S.old := S
temp := computeEX(S)
forall (partitions j)

Sj := pj ∧ tempj

end for
until(S = S.old)
output S

}
b) Greatest fix-point, EGp

Fig. 2. Classical Model Checking of Fix-points in presence of Partitioning

the partitioned image computation and therefore perform one set of cross-over
images in each iteration. In other words, each iteration until the fix-point is
reached performs a number of image computations, quadratic in the number of
partitions. As discussed in Section 3.1, this can get rather expensive.

In the next section, we present a model checking algorithm that localizes
computation to individual partitions by postponing these cross-over image com-
putations.

4 Partitioned Model Checking

In this section we present a new partitioned model checking algorithm which
works by postponing cross-over image computations. When the design is defec-
tive and is falsified, this algorithm discovers bugs faster, by virtue of computa-
tions being localized to individual partitions. Even when the design is correct and
is verified, this algorithm converges after fewer cross-over image computations.
We show that in the worst case, this algorithm has at most as many cross-
over image computations as the partitioned version of the classical algorithm,
presented in the previous section.

Model checking of boolean connectives is well-known for the partitioned ap-
proach, so we will only describe the image and fix-point computations. It must
however be mentioned that all boolean operations - conjunction, disjunction as
well as negation - are local to individual partitions5 and involve no interaction
between them. Also, it suffices to consider the existential temporal operators
EX, EG and EU , as these with the propositional connectives form a basis for
all CTL formulae.

4.1 Image Computation

The main computation in the partitioned form of the classical model checking
algorithm is image computation. As noted in the previous section, the computa-
tion of EXp from p comprises of n2 image computations, re-orderings and state
set transfers between partitions and this can get expensive. Even though our
focus is on trying to avoid computing the entire image at every step, it may still
be necessary to perform the full image computation in two cases – firstly, for
the occasional cross-over images, and secondly, when the property is expressed
in terms of the EX or AX operators. In this section, we look at some of the
issues in computing the image.

We find that performing the cross-over images one partition at a time is
memory intensive and often the intermediate BDDs get very large for many ex-
amples. Therefore, we advocate performing these cross-over image computations
from each partition into many partitions at a time.6

In order to perform cross-over images efficiently, we maintain a transfer man-
ager M . Given the set p, in order to compute EXp, each partition i computes the
image Tii(pi) which it keeps locally and the set of unowned states Ui = T

ii
(pi)

which is communicated to the manager M . M uses the window functions wj to
calculate the sets Sj =

∨
i6=j Ui ∗ wj and then transmits the states Sj to parti-

tion j. Thus EXp is computed by doing 2n image computations and 2n transfers
between partitions, although the number of re-orderings remains n2.

It should be mentioned here that in a multiprocessor environment, such a
manager can become a bottleneck, and should perhaps be dispensed with. But
the point is that, in each partition, only a constant number of image compu-
tations be performed, rather than a number linear in the number of partitions.
Thus the total number of image computations is linear rather than quadratic in
the number of partitions.

We call the fraction Tii(pi) that is computed locally using Tii as the ith

projection of the local image EXl. The rest of the images comprise the cross-over
image EXc. The algorithms to compute EXl and EXc are shown in Figure 3.

5 This is an important consequence of window-based partitioning.
6 Here, it must be noted that we address the case of verification using uniprocessor sys-

tems. The partitioned approach easily extends to distributed and parallel computing
environments and our improvements are expected to scale accordingly.

ComputeEXl(R) {
foreach (partition j)

PreImgjj(s) =
∃s′,i[Tjj(s, s

′, i) ∧ Rj(s
′)]

Nj(s) = PreImgjj(s)
end for
output N

}

a) Local, EXlp

ComputeEXc(R) {
foreach (partition j)

foreach (partition k 6= j)
PreImgjk(s) =

∃s′,i[Tjk(s, s′, i) ∧ Rk(s′)]

reorder BDD PreImgjk(s)
from partition order k to order j

end for
Nj(s) =

∨
k

PreImgjk(s)
end for
output N

}
b) Cross-over, EXcp

Fig. 3. Local and Cross-over Components of Image Computation with Partitioning

4.2 Fix-point computations

The main idea for model checking fix-points is that the computations can be
significantly localized to individual partitions by postponing the cross-over im-
age computations EXc, which are then aggregated and performed infrequently.
Accordingly, we define the fix-point operators in terms of two operations – local
image computations EXl and cross-over image computations EXc, rather than
the classical definition in terms of just the image computation operation, EX.

The algorithms for computing E(pUq) and EGp are shown in Figure 4. The
key idea is to create an under-approximation (resp. over-approximation) to EXp,
which can be wholly calculated locally within individual partitions, so that the
least (resp. greatest) fix-point computation can be localized.

computeEU(p, q) {
S := q
S.old := φ
repeat

S.old := S
forall (partitions j)

repeat
Sj .old := Sj

Sj := Sj ∨ (pj ∧ EXl(Sj , j))
until(Sj = Sj .old)

end for
S := S ∨ (p ∧ EXc(S))

until(S = S.old)
output S

}
a) Least fix-point, E(pUq)

computeEG(p) {
S := p
Border := p ∧ EXc(S)
repeat

S.old := S
forall (partitions j)

repeat
Sj .old := Sj

Sj := pj ∧ (EXl(Sj , j) ∨ Borderj)
until(Sj == Sj .old)

end for
Border := p ∧ EXc(S)

until(S == S.old)
output S

}
b) Greatest fix-point, EGp

Fig. 4. Fix-point Computations localized by postponing cross-over images

Definition 1. Each iteration of the outermost repeat-until loop in Algo.2 (shown
in Fig. 2) and Algo.4 (resp. Fig. 4) is called a phase of the respective algorithm.

From this definition, we note the following.

Lemma 1. Every phase has one and only one cross-over image.

We will show that Algo.4 terminates with the correct result and that the
number of its phases is at most the number of phases in Algo.2. Since each
such phase has precisely one cross-over image computation, we have that the
number of cross-over images computed by the new algorithm is, in the worst
case, no more than that for the existing algorithm. However in practice, the
new algorithm computes a number of “local” images in each phase. Therefore
it has fewer phases than the algorithm of Fig.2 almost always. As noted before,
even a small reduction in the number of cross-over images can result in a drastic
reduction in the total amount of time spent in cross-over images.

Theorem 1. a)[3] The procedure computeEU of Fig 4a, given the set of states
corresponding to formulas p and q as inputs, terminates with the output S being
precisely the set of states that model the formula E(pUq).
b) The number of its phases does not exceed the number of phases for Algo.2a.

Proof: Let the set of states S at the end of the ith phase be called Si. The
termination is guaranteed because the sequence of sets Si is strictly monotonic
increasing.

We first show the soundness of Algo.4a, i.e., at all times S |= E(pUq). We
show this by induction on the sets Sk. This clearly holds for any state in S0, since
every state in S0 satisfies q and therefore E(pUq). Assume that Si |= E(pUq).
Consider a state s ∈ Si+1 − Si. Then, by construction of Si+1 from Si, we have
s |= p. Either s is added in the local image computation EXl for some partition
j or in the cross-over image computations EXc. In either case, s |= p. It remains
to show that s is the predecessor of a state that models E(pUq). In the first case,
such a state is in the same partition as s and in the second case, such a state
exists in partition k such that s was added in the cross-over image computation
from k to j. Thus in either case, s models EX(E(pUq)). Consequently, Algo.3a
is sound.

Next, we show completeness, i.e., that every state of E(pUq) is indeed in set
S. For every state s |= E(pUq), there exists a sequence of states s0, s1, . . . , sk

that has the smallest length k ≥ 0 such that s0 = s, sk |= q, ∀i < k : si |= p

and ∀i < k : si ∈ EX(si+1). This sequence of states is called a witness for
the inclusion of s in E(pUq), and k is its length. Let T k be the set of states
whose inclusion in E(pUq) is witnessed by a path of length at most k. We
prove by induction on k that T k ⊆ S. In the base case, this trivially holds
because T 0 = q = S0 ⊆ S. Now, assume that T i ⊆ S. For any state s ∈ T i+1

consider the sequence of states s0 = s, s1, . . . , si+1 that witnesses its inclusion
in E(pUq). The sequence s1, . . . , si+1 is a witness for s1, therefore s1 ∈ T i ⊆ S.
In particular, there exists a smallest j so that s1 ∈ Sj . We know that s |= p and
s ∈ EX(s1) ⊆ EX(Sj). From the definition of Sj and Algo.4a, we have that
s ∈ Sj+1, whereby T i+1 ⊆ Sj+1 ⊆ S. By induction, this gives us E(pUq) ⊆ S.

This proves that Algo.4a terminates with the set S = E(pUq). Notice that
the set of states at the end of the kth phase of Algo.2a is precisely T i. As above,
∀i, T i+1 ⊆ Sj+1 ⊆ Si+1. Hence Algo.4a has at most as many phases as Algo.2a.

Before proving an analogous result for the greatest fix-point operator EGp,
we briefly motivate its construction. As EXlp is a subset of EXp, the result
of localizing the computation by performing repeated EXl operations yields an
under-approximation at every step. Since the greatest fix-point operator con-
verges by a sequence of monotonically decreasing sets, under-approximation
leads to some states being pruned too early and being lost for ever. States that
may be incorrectly pruned early in the computation of EG comprises of states,
each of which lies in a different partition from its predecessor, and can therefore
be discovered only by performing the operation EXc, which is the expensive
component of image computation.

Algo.4b compensates for this by maintaining a set Border, which is the set of
all states which have a successor in a different partition than themselves. This is,
clearly an over-approximation to EXc in each partition. This superset of EXc is
used to calculate a superset of EX at every image. This Border is updated only
once in each phase, when each partition has reached a fix-point with respect to
local images EXl. These over-approximations are monotonically decreasing, and
so the computed set eventually converges to the desired set EG.

We now prove the following theorem.

Theorem 2. a) The procedure computeEG of Fig 4b, given the set of states
corresponding to formula p as input , terminates with the output S being precisely
the set of states that model the formula EGp.
b) The number of its phases does not exceed the number of phases for Algo.2b.

Proof: Again, let the set of states S at the end of the ith phase be called Si. The
termination is guaranteed because the sequence of sets Si is strictly monotonic
decreasing.

We first show the soundness of Algo.4b, i.e., the algorithm only deletes states
which do not satisfy EGp. Note that a state can be deleted only in the two
circumstances. The first is if it does not satisfy p and is deleted in the very
beginning. We can therefore assume that all states under consideration satisfy
p. The second way a state may be deleted is during some phase, when it is not a
predecessor to any state in its own partition, and it is not on the Border, i.e., it
has been determined previously that this state is not a predecessor to any state
in another partition. Thus all successors to such a state satisfy ¬p, and therefore
any deleted state is not in EGp.

Next we show completeness, i.e., the algorithm deletes all states that do not
satisfy EGp. Consider a state s 6|= EGp. Then there exists a sequence of states
s0, s1, . . . , sk, which is cycle-free that has the greatest length k ≥ 0 such that
s0 = s, sk |= ¬p, ∀i < k : si |= p and ∀i < k : si ∈ EX(si+1). This sequence
of states is called a witness for the exclusion of s from EGp, and k is its length.
Now, let T k be the set of states whose exclusion from EGp is witnessed by a

longest cycle-free path of length at most k. We prove by induction on k that
T k ∩ Sk = φ. In the base case, this trivially holds because T 0 = ¬q and S0 = q.
Now, assume that T i ∩ Si = φ. For any state s ∈ T i+1 consider the sequence of
states s0 = s, s1, . . . , si+1 that witnesses its exclusion from EGp. The sequence
s1, . . . , si+1 is a witness for s1, therefore s1 ∈ T i, and therefore s1 6∈ Si. In
particular, there exists a smallest j so that s1 was deleted in the jth stage of
the algorithm. Two cases arise, either both s0 and s1 are in the same partition
or they are in different partitions. If they are in the same partition, then s0

is deleted in the jth stage also when a fix-point is computed locally in that
partition. If they are in different partitions, then s0 is in the border set for its
partition, and is deleted from this border set at the end of the jth stage because
its last successor s1 is deleted and no other successors can exist because this is
the longest witness. Therefore s is deleted in the j + 1th stage, as required to be
proved.

This proves that Algo.4b terminates with the set EGp. Notice that the set
of states T i is precisely the set of states deleted in phase i of Algo.2b. As above,
states in Ti have all been deleted by the end of i phases of the algorithm. Hence
Algo.4b has at most as many phases as Algo.2b.

4.3 Comparison

In the worst case, Algo.4 requires at most as many phases as Algo.2. However,
in practice, Algo.4 outperforms Algo.2, because when computing the least (resp
greatest) fix-point by localizing computation to individual partitions, Algo.4
often discovers (resp. prunes) many more states than when performing just one
image computation in each phase. Thus the postponement of cross-over images
affords a significant benefit in overall faster convergence of the model checking
algorithm, often reducing the number of phases.

We now analyze the benefit of reducing the number of cross-over images.
Consider a simple model where the number of image computations performed is
the same in each partition, say n. Further, assume the time for computing EXl

is L and that for EXc is C.

Thus Algo.2 performs n phases, each with one computation of EXl and EXc,
and incurs a total time Cold = n∗(L+C). Algo.4 needs potentially fewer phases,
say m ≤ n. Each such phase has one EXc computation and a number of EXl

computations, for concreteness say there are k ≥ 1 of them. This gives a total
time Cnew = m ∗ (k ∗ L + C).

Recall from Section 3.1 that C >> L. Thus for reasonable k, the reduction
in the number of cross-over images is directly reflected in the reduction of the
total model checking time. Further, in the best case scenario, when m ∗ k = n,
the reduction may be by as much as a factor of k.

In practice a significant gain is observed, as borne out by the experimental
results that are described in the next section.

5 Experimental Results

We implemented the algorithm of Fig. 3 on top of the CUDD package for BDDs
using the VIS-2.0 verification environment, which is a state-of-the-art public do-
main BDD-based formal verification package. We have chosen VIS for its Verilog
support and its powerful OBDD-package (i.e. CUDD [8]). As our techniques af-
fect only the BDD-data structures and algorithms, they can – with moderate
effort – be implemented in other packages as well. These techniques work with
any method of image computation; all experiments here are conducted using the
IWLS95 method.

We use the partitioning scheme detailed in [3] for performing reachability
analysis. Once the reachable states are computed, the model checking algorithms
use the same partitions created during reachability analysis.

Benchmarks
We chose the public domain circuits and their model checking properties from
the VIS-Verilog [9] benchmark suite. For sake of brevity, results are omitted for
some of the smaller examples.

Results
We notice that crossover image computation is indeed a bottleneck in verifica-
tion. On a uniprocessor machine, in the VIS-Verilog benchmark suite, there are
examples where the program runs out of memory while performing the crossover
images. Thus a reduction in the number and frequency of such cross-over im-
ages is critical for the full utilization of computing resources in a multi-processor
environment.

The run-times for our sequential implementation are shown in Table 1. The
first column of Table 1 has the name of the circuit and the property being
checked. This is followed by the data for cross-over image computation. Firstly,
the number of cross-over images is shown for the Naive algorithm, labeled Old
and for our proposed algorithm, labeled New. The next two columns show the
respective time taken. This is followed by the speedup achieved by the proposed
algorithm over the older one. The last two columns show the total time taken
by the model checking, after reachability has finished.

Experimentally, the proposed algorithm converges faster, both in terms of
total time, as well as in terms of number of expensive cross-over image compu-
tations that are performed. Further, the time taken by cross-over images as a
percentage of total time is reduced. These are demonstrated in the table that fol-
lows. In numerous cases (e.g. s1269, soap, ghg, etc.), we find that total cross-over
image time is reduced by two orders of magnitude or more.

Using the data in Table 1, we can compare the total time taken for model
checking by the two methods. Notice that the proposed algorithm reduces, often
dramatically, the number of cross-over images and the proportion of the total
time that is spent in doing them. In almost all the examples, this leads to a
direct improvement in the total time.

Cross-over images Model Checking
Circuit Number Time (s) time(sec)
Property Old New Old New Speedup Old New
bpbs 4 1 24 1 24 398 313
gcd 1 15 7 19.11 .7 27 68.97 108.07
gcd 2 15 7 18.27 .16 114 27.56 9.06
gcd 3 10 8 37.13 4.29 8.6 134.65 56.32
gcd 4 10 8 37.41 3.44 11 108.76 42.11
gcd 5 11 9 37.13 46.3 0.8 107.31 92.19
gcd 6 12 9 42.96 3.79 11 121.66 53.69
gcd 7 13 9 42.98 3.99 11 132.7 50.51
gcd 8 14 9 35.68 1.41 25 128.04 48.94
gcd 9 15 9 31.77 0.91 35 119.63 48.04
gcd 10 16 9 28.72 0.57 50 111.89 46.47
ghg 9367 6 166.12 0.15 1107 280.75 27.31
idu32 1 3 3 12.35 89.96 0.13 294.49 406.61
idu32 2 2 2 0.07 0.02 3.5 0.12 0.03
idu32 3 3 3 0.07 0.02 3.5 0.06 0.02
idu32 4 8 4 0.61 0.02 30 0.82 0.1
idu32 5 8 4 0.61 0.03 20 0.83 0.11
idu32 6 7 2 0.83 0.02 41 1.27 0.1
idu32 7 7 4 1.31 0.02 65 2.11 0.22
idu32 8 8 4 13.63 0.03 454 14.15 0.28
idu32 9 8 4 0.38 0.02 19 0.52 0.05
idu32 10 23 9 0.58 0.04 14 0.8 0.15
luckySeven 64 35 80.12 55.89 1.4 114.64 82.03
nosel 7 3 106.01 10.2 10 270.18 130.87
product 1 1 3 3 1 1798 418
s1269b 1 1 1 9.42 0.01 942 15 13
s1269b 2 8 8 67 1.01 67 93 1
soap 44 53 5 592.09 1.2 493 714.81 28.24
soap 45 80 8 106.76 1.86 57 224.19 104.11
soap 46 53 5 92.9 1.14 81 187.79 28.76
soap 47 52 5 41.87 1.11 37 94.89 31.83
soap 48 60 5 42.3 0.76 55 98.91 56.41
soap 49 79 9 94.68 1.61 58 207.18 73.78
soap 50 60 5 199.6 1.05 190 299.4 22.9
sppint2 1 5 4 86.26 45.06 1.9 100.39 58.26
sppint2 4 1 1 2.8 0.01 280 3.06 2.82
sppint2 5 7 3 4.4 0.01 440 4.94 0.75
sppint2 6 5 3 0.2 0.13 1.5 0.68 0.28
sppint2 7 16 6 4.23 0.7 6 24.66 2.27
sppint2 8 5 4 1.22 0.37 3.3 1.87 0.71
sppint2 9 14 6 1.29 0.74 1.7 5.01 1.81
sppint2 10 5 4 1.31 0.17 7.7 1.83 0.32
two 38 24 30.6 18.8 1.6 46 28
usb phy 1 49 23 16 19 0.8 43 29
usb phy 3 40 19 108.51 11.83 9 24.89 28.97
usb phy 4 21 11 5.6 2.32 2.4 12.01 8.26
usb phy 6 5 5 0.97 1.05 0.9 2 2.99
usb phy 7 39 17 10.96 2.14 5 24.32 8.72

Table 1. Comparison of existing and proposed algorithms for partitioned model check-
ing CTL properties on circuits in the VIS Verilog benchmark suite. For each circuit
and property, the first pair of columns shows the number of inter-partition cross-over
images performed by the two methods, the second set shows the time required for these
cross-over images, and the speedup achieved by the new method and the final set shows
the total model checking time.

6 Conclusion

We have presented a model checking algorithm in the presence of state space
partitioning, that aggregates and postpones cross-over image computations, al-
lowing for significant localization of image computations. This is also found in
practice to reduce the number of iterations in fix-point computations.

If during state space traversal, each partition requires many steps of image
computation to reach a local fix-point, then the proposed algorithm shows sig-
nificant gain (which is proportional to the depth of the fix-point). In the worst
case, this method would be identical to the naive one, with strict alternation
between localized (EXl) and cross-over (EXc) image operations in every fix-
point calculation. However, this is extremely unlikely because it corresponds to
a case where every “path” corresponding to a formula comprises of states each
of which lies in a different partition from its predecessor. This does not happen
in practice when partitioning is done properly.

Our experiments have been conducted on uniprocessor machines, but this
algorithm can be easily parallelized and we believe its benefits would scale to an
implementation in a multi-processor environment.

We believe this algorithm can be generalized to more expressive logics like
the full µ-calculus with a few modifications. A parallel form of the proposed
algorithm can also provide better resource usage than existing distributed model
checking algorithms.

References

1. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. IBM Workshop on Logics of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag,
1981.

2. Orna Grumberg, Tamir Heyman, and Assaf Schuster. Distributed symbolic model
checking for µ-calculus. In Computer Aided Verification, pages 350–362, 2001.

3. S. Iyer, D. Sahoo, C. Stangier, A. Narayan, and J. Jain. Improved symbolic Verifi-
cation Using Partitioning Techniques. In Proc. of CHARME 2003, volume 2860 of
Lecture Notes in Computer Science, 2003.

4. J. Jain. On analysis of boolean functions. Ph.D Dissertation, Dept. of Electrical

and Computer Engineering, The University of Texas at Austin, 1993.
5. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.
6. A. Narayan, A. Isles, J. Jain, R. Brayton, and A. Sangiovanni-Vincentelli. Reacha-

bility Analysis Using Partitioned-ROBDDs. In Proc. of the Intl. Conf. on Computer-

Aided Design, pages 388–393, 1997.
7. A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-

ROBDDs - A Compact, Canonical and Efficiently Manipulable Representation for
Boolean Functions. In Proc. of the Intl. Conf. on Computer-Aided Design, pages
547–554, 1996.

8. Fabio Somenzi. CUDD: CU Decision Diagram Package ftp://vlsi.colorado.edu/pub,
2001.

9. VIS. Vis verilog benchmarks http://vlsi.colorado.edu/ vis/, 2001.

